首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.  相似文献   

2.
The results of a computational study of a helmeted human head are presented in this paper. The focus of the work is to study the effects of helmet pad materials on the level of acceleration, inflicted pressure and shear stress in a human brain model subjected to a ballistic impact. Four different closed cell foam materials, made of expanded polystyrene and expanded polypropylene, are examined for the padding material. It is assumed that bullets cannot penetrate the helmet shell. Finite element modelling of the helmet, padding system, head and head components is used for this dynamic nonlinear analysis. Appropriate contacts and conditions are applied between the different components of the head, as well as between the head and the pads, and the pads and the helmet. Based on the results of simulations in this work, it is concluded that the stiffness of the foam has a prominent role in reducing the level of the transferred load to the brain. A pad that is less stiff is more efficient in absorbing the impact energy and reducing the sudden acceleration of the head and consequently lowers the brain injury level. Using the pad with the least stiffness, the influence of the angle of impacts as well as the locations of the ballistic strike is studied.  相似文献   

3.
Abstract

Sporting helmets with linear attenuating strategies are proficient at reducing the risk of traumatic brain injury. However, the continued high incidence of concussion in American football, has led researchers to investigate novel helmet liner strategies. These strategies typically supplement existing technologies by adding or integrating head-helmet decoupling mechanisms. Decoupling strategies aim to redirect or redistribute impact force around the head, reducing impact energy transferred to the brain. This results in decreased brain tissue strain, which is beneficial in injury risk reduction due to the link between tissue strain and concussive injury.

The purpose of this study was to mathematically demonstrate the effect of ten cases, representing theoretical redirection and redistribution helmet liner strategies, on brain tissue strain resulting from impacts to the head. The kinematic response data from twenty head impacts collected in the laboratory was mathematically modified to represent the altered response of the ten different cases and used as input parameters to determine the effect on maximum principal strain (MPS) values, calculated using finite element modeling. The results showed that a reduced dominant coordinate component (contributes the greatest to resultant) of rotational acceleration decreased maximum principal strain in American football helmets. The study theoretically demonstrates that liner strategies, if applied correctly, can influence brain motion, reduce brain tissue strain, and could decrease injury risk in an American football helmet.  相似文献   

4.
Head injury resulting from blast loading, including mild traumatic brain injury, has been identified as an important blast-related injury in modern conflict zones. A study was undertaken to investigate potential protective ballistic helmet liner materials to mitigate primary blast injury using a detailed sagittal plane head finite element model, developed and validated against previous studies of head kinematics resulting from blast exposure. Five measures reflecting the potential for brain injury that were investigated included intracranial pressure, brain tissue strain, head acceleration (linear and rotational) and the head injury criterion. In simulations, these measures provided consistent predictions for typical blast loading scenarios. Considering mitigation, various characteristics of foam material response were investigated and a factor analysis was performed which showed that the four most significant were the interaction effects between modulus and hysteretic response, stress–strain response, damping factor and density. Candidate materials were then identified using the predicted optimal material values. Polymeric foam was found to meet the density and modulus requirements; however, for all significant parameters, higher strength foams, such as aluminum foam, were found to provide the highest reduction in the potential for injury when compared against the unprotected head.  相似文献   

5.
The high incidence rate of concussions in football provides a unique opportunity to collect biomechanical data to characterize mild traumatic brain injury. The goal of this study was to validate a six degree of freedom (6DOF) measurement device with 12 single-axis accelerometers that uses a novel algorithm to compute linear and angular head accelerations for each axis of the head. The 6DOF device can be integrated into existing football helmets and is capable of wireless data transmission. A football helmet equipped with the 6DOF device was fitted to a Hybrid III head instrumented with a 9 accelerometer array. The helmet was impacted using a pneumatic linear impactor. Hybrid III head accelerations were compared with that of the 6DOF device. For all impacts, peak Hybrid III head accelerations ranged from 24 g to 176 g and 1,506 rad/s(2) to 14,431 rad/s(2). Average errors for peak linear and angular head acceleration were 1% ± 18% and 3% ± 24%, respectively. The average RMS error of the temporal response for each impact was 12.5 g and 907 rad/s(2).  相似文献   

6.
The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions – frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet–human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s?1 are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions.  相似文献   

7.
Energy cost is a major factor influencing the tolerable thermal load, particularly during exercise in the heat. However, no data exist on the metabolic cost of football practice, although a value of 35% of maximal aerobic capacity (VO(2)max) has been estimated. The energy cost and thermoregulatory response of offensive linemen (OL) was measured wearing different American football ensembles during a simulated half of football practice in the heat. Five collegiate offensive linemen (133 kg, 20% fat, 42 ml x kg(-1) x min(-1) maximal oxygen uptake) completed each of four 60-minute test sessions in an environmental chamber (28 degrees C, 55% relative humidity [RH]) wearing shorts (S), helmet (H), helmet and shoulder pads (HS), and full gear (FUL). Core temperature in the digestive tract (TGI) was obtained using an ingestible sensor. During simulated football drills (e.g., repetitions of drive blocking), exercise intensity ranged from 30 to 81% VO(2)max but averaged 55%VO(2)max (6.7 METS) overall. Blood lactate remained >5 mmol x L(-1), and heart rate (HR) averaged 79%HRmax. Equipment had a significant effect on %VO(2)max but only during recovery between drills with HS (61.4 +/- 3.7%) compared with H (53.3 +/- 6.9%) and S (40.1 +/- 8.5%). The TGI was higher (p < 0.05) with HS compared with H at several time-points after 30 minutes. Football practice for OL elicits a significantly higher overall metabolic cost (>6 METS, >50%VO(2)max) than assumed in previous studies. The addition of shoulder pads increases core temperature and energy cost, especially during recovery between active drills in unacclimatized linemen.  相似文献   

8.
In recent years, there has been a concerted effort for greater job safety in all industries. Personnel protective equipment (PPE) has been developed to help mitigate the risk of injury to humans that might be exposed to hazardous situations. The human head is the most vulnerable to impact as a moderate magnitude can cause serious injury or death. That is why industries have required the use of an industrial hard hat or helmet. There have only been a few articles published to date that are focused on the risk of head injury when wearing an industrial helmet. A full understanding of the effectiveness of construction helmets on reducing injury is lacking. This paper presents a simulation-based method to determine the threshold at which a human will sustain injury when wearing a construction helmet and assesses the risk of injury for wearers of construction helmets or hard hats. Advanced finite element, or FE, models were developed to study the impact on construction helmets. The FE model consists of two parts: the helmet and the human models. The human model consists of a brain, enclosed by a skull and an outer layer of skin. The level and probability of injury to the head was determined using both the head injury criterion (HIC) and tolerance limits set by Deck and Willinger. The HIC has been widely used to assess the likelihood of head injury in vehicles. The tolerance levels proposed by Deck and Willinger are more suited for finite element models but lack wide-scale validation. Different cases of impact were studied using LSTC's LS-DYNA.  相似文献   

9.
Abstract

In the present study, the free fall impact test in accordance with the EN1078 standard for certification of bicycle helmets is replicated using numerical simulations. The impact scenario is simulated using an experimentally validated, patient-specific head model equipped with and without a bicycle helmet. Head accelerations and intracranial biomechanical injury metrics during the impacts are recorded. It is demonstrated that wearing the bicycle helmet during the impact reduces biomechanical injury metrics, with the biggest reduction seen in the metric for skull fracture.  相似文献   

10.
On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration.  相似文献   

11.
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave–head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head–helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.  相似文献   

12.
Evolutionarily optimized frictional devices of insects are usually adapted to attach to a variety of natural surfaces. Orthopteran attachment pads are composed of hexagonal outgrowths with smooth flexible surfaces. The pads are designed to balance the weight of the insect in different positions and on different materials. In a scanning electron microscopy study followed by freezing-substitution experiments, the ultrastructural architecture of the pad material was visualized. In friction experiments, the interaction was measured between the attachment pad and a polished silicon surface. The inner structure of this material contains distally directed rods, branching close to the surface, and spaces filled with fluid. The specific design of the pad material provides a higher frictional force in the distal direction. Frictional anisotropy is more enhanced at higher normal forces and lower sliding velocities. It is concluded that optimal mechanical functionality of biosystems is the result of a combination of surface structuring and material design.  相似文献   

13.
Jockey head injuries, especially concussions, are common in horse racing. Current helmets do help to reduce the severity and incidences of head injury, but the high concussion incidence rates suggest that there may be scope to improve the performance of equestrian helmets. Finite element simulations in ABAQUS/Explicit were used to model a realistic helmet model during standard helmeted rigid headform impacts and helmeted head model University College Dublin Brain Trauma Model (UCDBTM) impacts.

Current helmet standards for impact determine helmet performance based solely on linear acceleration. Brain injury-related values (stress and strain) from the UCDBTM showed that a performance improvement based on linear acceleration does not imply the same improvement in head injury-related brain tissue loads. It is recommended that angular kinematics be considered in future equestrian helmet standards, as angular acceleration was seen to correlate with stress and strain in the brain.  相似文献   

14.
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.  相似文献   

15.
American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.  相似文献   

16.
The controlled cortical impact (CCI) model is widely used in many laboratories to study traumatic brain injury (TBI). Although external impact parameters during CCI tests could be clearly defined, little is known about the internal tissue-level mechanical responses of the rat brain. Furthermore, the external impact parameters tend to vary considerably among different labs making the comparison of research findings difficult if not impossible. In this study, a design of computer experiments was performed with typical external impact parameters commonly found in the literature. An anatomically detailed finite element (FE) rat brain model was used to simulate the CCI experiments to correlate external mechanical parameters (impact depth, impact velocity, impactor shape, impactor size, and craniotomy pattern) with rat brain internal responses, as predicted by the FE model. Systematic analysis of the results revealed that impact depth was the leading factor affecting the predicted brain internal responses. Interestingly, impactor shape ranked as the second most important factor, surpassing impactor diameter and velocity which were commonly reported in the literature as indicators of injury severity along with impact depth. The differences in whole brain response due to a unilateral or a bilateral craniotomy were small, but those of regional intracranial tissue stretches were large. The interaction effects of any two external parameters were not significant. This study demonstrates the potential of using numerical FE modeling to engineer better experimental TBI models in the future.  相似文献   

17.
Kidneys are third most injured organs in abdominal trauma after liver and spleen; this study therefore is an attempt to understand the behaviour of kidneys under blunt trauma. Dynamic impact tests were performed on 20 fresh porcine kidneys to study the injury propagation in the organ, and the acceleration of the impactor was measured. A kidney model was developed with structural details like capsule and cortex. The kidney cortex was modelled with solid hexahedral elements and the capsule was modelled with quadratic shell elements. The material models for the capsule and cortex were used from the experimental data reported in our previous study. The developed model was calibrated using previous and current experimental results to reproduce the injuries of the organ in terms of acceleration of the impactor, and the injuries sustained by the organ during the experiments. The developed kidney model is observed to be robust and can be integrated with the available human body finite element models to simulate accidents and to predict or simulate injuries.  相似文献   

18.
The relationship between dung pad size and both adult colonisation and larval development was investigated in an assemblage of north temperate dung beetles ( Geotrupes. Aphodius and Sphaeridium ) using both dung pads and baited pitfall traps. Wet weight of 22-day-old natural dung pads was found to vary widely in the field (< 100 g – >1000 g). Across all sampling dates in field experiments, dung pad size had a significant influence on dung beetle biomass sampled from pads. Closer examination of experimental dung pads on the second day after deposition, when beetle biomass was at a maximum, revealed not only a general positive relationship between pad size and dung beetle biomass but, more importantly, a positive relationship between dung pad size and dung beetle density (dung beetle biomass per unit dung volume). There was a strong trend for Aphodius species richness to increase, and maintain higher values for longer periods of time, in larger pads. Although dung pad and pitfall trap samples could differ in the actual numbers of beetles captured, the relationship between different dung sizes and dung beetle biomass was similar, indicating that the phenomenon is largely related to immigration processes. Pat residence times oi A. rufipes in the laboratory were significantly positively correlated with dung pad size. In two field experiments, positive correlations were found between dung pad size and numbers of larvae in pads of different sizes and in one of these experiments, larval densities (numbers per unit dung volume) were significantly and positively correlated with dung pad size. In one experiment, Aphodius larvae in the early stages of development were found to preferentially occupy the basal area of dung pads. We discuss the implications of our findings in the context of resource utilisation by north temperate dung beetles.  相似文献   

19.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

20.
It has been established that substantial negative changes in neurocognitive function can be observed in a large percentage of athletes who participate in contact sports such as soccer or football, motivating a need for improved safety systems. Head accelerations in men’s lacrosse are similar to those in football and female lacrosse players experience high rates of concussions, necessitating better head protection in both sports. Previous studies have sought to evaluate the ability of modern football helmets to mitigate impacts both normal and oblique to the surface of the helmet using a system that quantifies both the input load and the resulting accelerations of a Hybrid III headform. This study quantifies the inputs and outputs of the helmet-Hybrid III headform system in order to compare the impact attenuation capability of two male and two female lacrosse helmets. Of those helmets tested, the better performing male helmet was the Schutt Stallion 650 and the better performing female helmet was the Hummingbird excepting device failure at the rear boss impact location, but football helmets still generally outperformed the lacrosse helmets tested here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号