首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Two basic tenets of competition among parasitoids, that taxonomically distinct parasitoids are unable to discriminate against hosts that have previously been attacked by a competitor and that previous parasitism reduces the quality of a host, were tested by monitoring the oviposition response of Hyssopus pallidus, a gregarious ectoparasitoid, to healthy codling moth larvae and codling moth larvae that had previously been parasitised by a solitary endoparasitoid, Ascogaster quadridentata. 2. Hyssopus pallidus accepted both categories of host larva for oviposition when its competitor was constrained as a first‐instar larva by the diapause development of its host, but discriminated against previously parasitised host larvae when its competitor was present as a larger larva in a non‐diapausing host. 3. Hyssopus pallidus distinguished between the two categories of host larva by allocating twice as many eggs to host larvae previously parasitised by A. quadridentata, a response that was not influenced by previous oviposition experience. 4. The larger clutch sizes allocated to previously parasitised host larvae produced twice as many female progeny, each of a typical size, such that the total biomass was twice that produced from the smaller clutches laid on healthy host larvae. Possible confounding influences of host age and diapause are discounted. 5. These results demonstrate that interspecific discrimination does occur in H. pallidus and that host quality can be improved through previous parasitism by an endoparasitoid. Although interspecific discrimination appears rare among insect parasitoids, it may have been overlooked among ectoparasitoids and requires examination of the fitness consequences of interspecific interactions to clarify its adaptive significance.  相似文献   

2.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

3.
Diachasma alloeum (Muesebeck) (Hymenoptera: Braconidae) is a solitary larval endoparasitoid attacking Rhagoletis (Diptera: Tephritidae) species. Rhagoletis pomonella (Walsh) mark the surface of fruit after oviposition with an oviposition marking pheromone (OMP) which deters conspecific female flies. Herein we demonstrate that female D. alloeum wasps reared from either apple or hawthorn race R. pomenella larvae also deposit an OMP that reduces oviposition by conspecific female wasps. Significantly fewer wasps accepted fruit that had received prior wasp oviposition and OMP or OMP alone without oviposition compared with control fruit for a minimum of 7 days on both fruit types. Rinsing fruit with a 50% ethanol solution appeared to remove the OMP rendering fruit more acceptable for oviposition than marked fruit that was not rinsed. Wasps of each host race were able to detect and avoid the OMP of the sister race and fruit substrate type did not affect wasp response to the pheromone. The possibility of an internal marker deposited during oviposition is also discussed.  相似文献   

4.
5.
The preference–performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring.  相似文献   

6.
1. Several hypotheses concerning modified dispersal behaviour in aphids parasitised by aphidiine wasps (Hymenoptera: Braconidae: Aphidiinae) were tested in the laboratory. Behavioural changes may be host-mediated, parasitoid-mediated, or a by-product of trauma and pathology. 2. Mummification site varied with parasitoid species. Pea aphids (Acyrthosiphon pisum) parasitised by Aphidius ervi, Aphidius pisivorus, Monoctonus paulensis, and Praon pequodorum mummified near the aphids’ preferred feeding sites on bean plants, but those parasitised by Ephedrus californicus often died and mummified outside the colony, away from the plants. 3. Parasitism by E. californicus had a progressive effect on the behaviour of pea aphids. Approaching death, aphids lost motor control and frequently dropped off the host plant when disturbed. Dropped aphids were unable to return to the feeding site and mummified elsewhere. The proportion of aphids mummifying outside the colony increased with mummy density. 4. Mummification site was not influenced by the presence within the same colony of aphids parasitised by different species of aphidiine wasps. 5. The evidence does not support the hypothesis that mummification site selection in E. californicus is determined by a host- or a parasitoid-mediated change in aphid dispersal behaviour. Association-specific differences in the dynamics of larval development and growth between aphidiine species provide an equally valid and possibly more general explanation of mummification behaviour.  相似文献   

7.
Chemical information is crucial to insect parasitoids for successful host location. Here, we evaluated the innate response of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), a fruit fly larval parasitoid, to cues from host and host habitat (i.e., fruit infested with host larvae). We first assessed the preference of female parasitoids between oranges infested with Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) and non‐infested fruit. Females were highly attracted towards infested oranges on the basis of volatile chemical cues. After this initial experiment, we aimed at revealing the potential sources of volatile cues present in an infested fruit. To this end, we considered five potential sources: (1) punctured fruit; (2) fly feeding, frass, or host‐marking pheromone deposited on the orange surface; (3) larval activity inside the fruit; (4) the larvae themselves; and (5) fungi associated with infestation of oranges. Habitat cues associated with host activity and those produced by rotten oranges or oranges colonized by fungi were highly attractive for female wasps, whereas odours associated with the activity of the adults on the surface of the fruit, and those released by the fruit after being damaged (as happens during fruit fly egg‐laying) were not used as cues by female parasitoids. Once the female had landed on the fruit, direct cues associated with larval activity became important although some indirect signals (e.g., products derived from larval activity inside the fruit) also increased host searching activity. Our findings indicate that naïve D. longicaudata uses chemical cues during host habitat searching and that these cues are produced both by the habitat and by the host larvae.  相似文献   

8.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

9.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   

10.
Substrates contaminated by wandering fifth instar larvae ofPlodia interpunctella (Hübner) (Lepidoptera: Pyralidae) elicit oviposition by conspecific female moths, and larval rearing diet enhances oviposition and also induces upwind flight. Two-choice oviposition assays determined that four-day-old gravid femaleP. interpunctella preferred to lay eggs on dishes containing cornmeal-based rearing diet compared to empty dishes. Pieces of cheesecloth contaminated by fifth instar larvae elicited more oviposition than untreated cheesecloth or dishes with food. The combination of larval contamination and food was preferred over food only or larval contamination only in both two- and four-choice experiments. The factor(s) in larval contamination responsible for eliciting oviposition in female moths was extracted in hexane, confirming that organic semiochemicals are responsible for the effect. The oviposition-eliciting activity of larval contamination was retained on cheesecloth for up to 30 days following treatment with larvae, suggesting the active component(s) is stable and of low relative volatility. In two-choice windtunnel bioassays female moths initiated flight only when rearing food was present in one of the treatments, and they displayed the highest landing responses to a combination of larval contamination and food. Earlier work onP. interpunctella and related pyralid species found that larval contamination due to secretions from the mandibular glands acted as both a spacing pheromone for wandering larvae and as a kairomone for host-seeking parasitoid wasps. The present study suggests that the same or a similar secretion acts as an oviposition-eliciting pheromone for conspecific females.  相似文献   

11.
1. Entomopathogenic nematodes (EPN) are currently being used as introduced biological control agents against the larvae of the native European forestry pest Hylobius abietis L. which develop under the bark of stumps and roots of newly dead conifer trees. 2. The potential for resource competition between gregarious ectoparasitoid Bracon hylobii Ratz and EPN by recording oviposition and related behaviours of B. hylobii females on EPN‐infected H. abietis larvae was investigated. Wasps did not parasitise EPN‐infected host larvae that were dead when presented, but naÏve and experienced wasps parasitised live EPN‐infected hosts. NaÏve wasps parasitised live EPN‐infected hosts significantly less frequently than healthy hosts only when the infected larvae were close to death (i.e. died during 24‐h trial). Parasitism by experienced wasps was unaffected by host infection. 3. Wasp probing and oviposition were positively associated with the amount of host movement. Preventing H. abietis larvae from chewing on bark significantly reduced parasitism by naÏve, but not experienced wasps. 4. The number of eggs per clutch was not affected by bark chewing or EPN‐infection of H. abietis larvae. 5. NaÏve and experienced B. hylobii parasitised two abnormal hosts (larvae of coleopteran Rhagium bifasciatum Fabricius and lepidopteran Galleria mellonella L.), both of which moved and chewed on bark during trials. 6. It was concluded that B. hylobii can use vibrational cues generated by host movement and feeding to locate hosts at short range and accepts unsuitable (EPN‐infected or abnormal) hosts as long as these create such cues. The implications for competition between B. hylobii and EPN and possible ways of minimising it when applying EPN are discussed.  相似文献   

12.
Pepper weevils, Anthonomus eugenii Cano (Coleoptera: Curculionidae), feed and oviposit in flower buds and small fruits of plants in the genus Capsicum, as well as several species of Solanum (Solanaceae). Females chew a small hole into the fruit, deposit a single egg within the cavity, and seal the hole with a clear anal secretion that hardens into an ‘oviposition plug’. Female oviposition behavior was studied in a series of small‐arena bioassays to determine whether previous oviposition in Jalapeño pepper fruit deterred subsequent oviposition and to determine what specific cues from an infested fruit influence female behavior. In choice and no‐choice tests, females preferred clean fruit to fruit that had received four eggs 24 h previously (i.e., infested fruit), whether the fruit was infested with conspecific eggs or their own eggs. Further bioassays demonstrated that the presence of female frass, or oviposition plugs alone, in the absence of eggs or any fruit damage, was sufficient to deter oviposition. In addition, females given the choice between an infested fruit with the oviposition plug removed or an unaltered infested fruit preferred the fruit with no plugs, even when eggs, frass, and feeding damage were still present. To determine whether females would avoid infested peppers under more natural conditions, we quantified oviposition on infested and uninfested sentinel pepper fruit within individually caged plants and on clean and infested plants caged together. Females consistently laid more eggs on clean fruit than on infested fruits and moved within and among pepper plants to search for more acceptable oviposition sites. We conclude that oviposition plugs, along with contaminated female, but not male, frass contain a deterrent that, in the absence of any other cue, is enough to alert a female that a patch is occupied.  相似文献   

13.
Abstract The oviposition site that a female mosquito selects will influence the fitness of her larvae. We conducted a series of artificial pond experiments to compare the oviposition responses of two species of mosquitoes with the presence of tadpoles, conspecifics and chemical cues from these organisms. The two mosquito species differ markedly in larval ecology. The larvae of one species, Culex quinquefasciatus, co‐occur with numerous freshwater organisms, including tadpoles of Linmodynastes peronii (the striped marsh frog). Larvae of the other mosquito, Ochlerotatus australis, inhabit small brackish rock ponds where the main potential competitors are tadpoles of Crinia signifera (the common eastern froglet). In field trials, females of both mosquito species oviposited significantly more often in water that contained (or had previously contained) conspecific larvae. However, these superficially similar responses were mediated via different pathways: fungicide abolished the response by C. quinquefasciatus but not by O. australis. The two mosquito species also responded differently to cues associated with syntopic tadpoles. The presence of tadpoles did not influence oviposition by C. quinquefasciatus, but O. australis oviposited less often if tadpoles were present. These interspecific differences in oviposition behaviour may be adaptive to differences in larval ecology: competition with tadpoles is likely to be more significant for O. australis than for C. quinquefasciatus. Our findings thus support the hypothesis that mosquitoes oviposit selectively to avoid potential anuran larval competitors.  相似文献   

14.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   

15.
Herbivorous insects may be informed about the presence of competitors on the same host plant by a variety of cues. These cues can derive from either the competitor itself or the damaged plant. In the mustard leaf beetle Phaedon cochleariae (Coleoptera, Chrysomelidae), adults are known to be deterred from feeding and oviposition by the exocrine glandular secretion of conspecific co-occurring larvae. We hypothesised that the exocrine larval secretion released by feeding larvae may adsorb to the surface of Chinese cabbage leaves, and thus, convey the information about their former or actual presence. Further experiments tested the influence of leaves damaged by conspecific larvae, mechanically damaged leaves, larval frass and regurgitant on the oviposition and feeding behaviour of P. cochleariae. Finally, the effect of previous conspecific herbivory on larval development and larval host selection was assessed. Our results show that (epi)chrysomelidial, the major component of the exocrine secretion from P. cochleariae larvae, was detectable by GC-MS in surface extracts from leaves upon which larvae had fed. However, leaves exposed to volatiles of the larval secretion were not avoided by female P. cochleariae for feeding or oviposition. Thus, we conclude that secretion volatiles did not adsorb in sufficient amounts on the leaf surface to display deterrent activity towards adults. By contrast, gravid females avoided to feed and lay their eggs on leaves damaged by second-instar larvae for three days when compared to undamaged leaves. Mechanical damage of leaves and treatment of artificially damaged leaves with larval frass or regurgitant did not affect oviposition and feeding of P. cochleariae. Since no adverse effects of previous herbivory on larval development were detected, we suggest that female P. cochleariae avoid Chinese cabbage leaves damaged by feeding larvae for other reasons than escape from competition or avoidance of direct negative effects that result from consuming induced plant material.  相似文献   

16.
1. Generalist koinobiont parasitoids often exhibit high flexibility in their development; their larvae shorten or prolong the developmental period depending on the host quality at parasitisation. However, flexibility of the growth rate of parasitoid larvae has rarely been investigated so far. 2. This study investigated how the koinobiont parasitoid wasps Asobara japonica and Leptopilina ryukyuensis regulate their larval growth when they parasitise host Drosophila larvae with varying larval periods. 3. In both parasitoid species, the preimaginal period was longer when they parasitised 1‐day‐old larvae of Drosophila rufa than when they parasitised older larvae of D. rufa or when they parasitised larvae of Drosophila simulans, a species with a shorter larval period than D. rufa. After host pupariation, A. japonica accelerated its growth, thereby showing a biphasic growth curve. On the other hand, L. ryukyuensis did not accelerate its growth after host pupariation. 4. Growth retardation of parasitoid larvae in 1‐day‐old D. rufa larvae would contribute to avoiding excess growth before host pupariation, because the excess growth of parasitoid larvae would have negative effects on host growth. The growth rate acceleration of A. japonica after host pupariation suggests that they enhance resource utilisation in a host that has reached maximum body mass. It remains uncertain as to why L. ryukuensis does not show clear accelerated growth after host pupariation. Nonetheless, these results suggest that parasitoid larvae have the ability to detect the developmental stage of hosts in a species‐specific manner.  相似文献   

17.
For the biological control of diamondback moth (DBM) larvae in commercial greenhouses, we have previously identified a blend of volatiles that attracted Cotesia vestalis, a parasitoid of DBM larvae. Here, we tested the effects of an artificial volatile blend on the attractiveness of komatsuna plants (Japanese mustard spinach; Brassica rapa var. perviridis) to C. vestalis under greenhouse conditions. First, we showed that female C. vestalis preferred infested komatsuna plants to uninfested plants in the greenhouse. Under the same conditions, placing the artificial attractants near both infested and uninfested plants did not affect the wasps’ preference. However, when comparing infested komatsuna plants coupled with the artificial attractants with infested plants without them, significantly more female C. vestalis were attracted to the former. The possible use of artificial C. vestalis attractants for the biological control of DBM is discussed.  相似文献   

18.
Most female herbivores ensure to lay eggs where their offspring can develop successfully. The oviposition preferences of females affect strategies in pest management. In this study, the performance of two cohorts of Trichoplusia ni larvae on cabbage and cotton (after they had been transferred from their original host plants) were investigated. The preferences of female moth ovipositing and larval feeding on these two host plants were observed. The results indicated that plants significantly affected oviposition preference of the female adults and development and survival of larvae of T. ni. All females preferred to lay eggs on cabbage than cotton regardless from which host they originated. The detrimental effects of cotton on the development and survival of T. ni larvae originated from cabbage (CaTn) increased with the increase of the larval age when they were transferred. In addition, the host plant change did not significantly affect the development and survival of larvae of T. ni originating from cotton (CoTn). Larvae of CaTn preferred cabbage plants as compared to cotton plants, whereas larvae of CoTn did not show a significant choice. Although the adult females preferred laying eggs on cabbage, they did not show preferences between cotton and cabbage in a Y‐tube olfactometer test. The hypothesis of oviposition preference and performance of larvae was supported by the results of CaTn, whereas they not supported by those from CoTn. Based on these results, the strategy to manage this serious pest was discussed.  相似文献   

19.
In laboratory and garden experiments, we tested for the existence of adaptive patterns of oviposition and larval behaviour regarding group size in the gregarious tortoise beetle Chelymorpha varians Blanchard (Coleoptera: Chrysomelidae: Cassidinae) on its host plant Calystegia sepium L. (Convolvulaceae). Specifically, we addressed the following questions: (i) Which is the more frequent egg cluster size? (ii) Does cluster size fully predict larval group size? (iii) Are newborn larvae attracted or repelled to conspecific groupings? and (iv) Which is the group size associated with enhanced larval development and adult mass? We found that the mean cluster size was 21.4 eggs. Egg hatch time was significantly shorter in larger clusters. A regression analysis of larval group size against cluster size showed non‐significant results. Thus, original cluster size did not totally determine the larval group size. The mean larval group size was 17.1. Choice tests in an experimental arena showed that larvae clearly preferred leaves of a host plant rather than moistened papers, and that larvae preferred a small group of conspecifics (four larvae per leaf) over larger groups (12 or 20 larvae). Empty leaves of the host plant showed an intermediate level of preference. Development time and beetle performance (adult mass) were affected by larval group size. Larvae in the smallest group (one per leaf) took four more days to attain adulthood than larvae in the larger groups (12 and 20 larvae). Adult C. varians reared in the 12‐larvae group were significantly larger than those reared at the other densities. Comparison of patterns across experimental groups, excluding the 12‐larvae group, showed a tendency for a greater final mass with slower developmental rate.  相似文献   

20.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号