首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wing morphological variations are described here for the lycaenid butterfly Tongeia fischeri. A landmark‐based geometric morphometric approach based on wing venation of 197 male and 187 female butterflies collected in Japan was used to quantify wing size and shape variations between sexes and among populations. Sexual dimorphism in wing size and shape was detected. Females had significantly larger wings than males, while males showed a relatively elongated forewing with a longer apex and narrower wing tornus in comparison to females. Intraspecific variations in wing morphology among populations were revealed for the wing shape, but not wing size. Distinct wing shape differences were found in the vein intersections area around the distal part of the discal cell where median veins originated in the forewing and around the origin of the CU1 vein in the hindwing. In addition, phenotypic relationships inferred from wing shape variations grouped T. fischeri populations into three groups, reflecting the subspecies classification of the species. The spatial variability and phenotypic relationships between conspecific populations of T. fischeri detected here are generally in agreement with the previous molecular study based on mitochondrial and nuclear sequences, suggesting the presence of a phylogenetic signal in the wing shape of T. fischeri, and thus having taxonomic implications.  相似文献   

2.
Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore‐ and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.  相似文献   

3.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

4.
Gender was determined by laparoscopic visualization of the gonads for 38 adult American flamingos (Phoenicopterus ruber ruber L.) and 36 adult Chilean flamingos (P. chilensis L.). Concomitant body weight (kg) and linear measurements (mm) of the culmen (bill), tarsus (tarsometatarsus), middle toe, and wing were taken. Statistical comparisons of body weight and linear measurements for male vs. female were made for each species. Also, the same-sex statistical comparisons were made between these two species, and between each of these two species and with data for greater flamingos (P. r. roseas L.) from a previous publication. As previously published for greater flamingos, an overlap between sexes existed in all measurements with males on average larger than females for both American and Chilean flamingos. However, Students' t-test indicated a significant sexual difference for all measurements between males and females of each species except for culmen length in Chilean flamingos. Students' t-test also indicated a significant difference when species were compared (Chilean vs. greater, and American vs. Chilean) and subspecies (American vs. greater) were compared for most of the 5 measurements. Thus, despite limitations imposed by between-sex overlap, weights and linear measurements, especially tarsus, middle toe, and wing length, appear to be useful in determining an individual's gender when species or subspecies identification is considered.  相似文献   

5.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   

6.
Wing shape has been shown in a variety of species to be influenced by natural and sexual selection. In damselflies, front- and hind wings can beat independently, and functional differentiation may occur. Males of Calopteryx damselflies show species-specific nuptial flights that differ in colour signalling with the hind wings. Therefore, hind wing shape and colour may evolve in concert to improve colour display, independent of the front wings. We predicted that male hind wing shape evolves faster than front wing shape, due to sexual selection. Females do not engage in sexual displays, so we predicted that females do not show differences in divergence between front- and hind wing shape. We analysed the non-allometric component of wing shape of five European Calopteryx taxa using geometric morphometrics. We found a higher evolutionary divergence of hind wing shape in both sexes. Indeed, we found no significant differences in rate of evolution between the sexes, despite clear sex-specific differences in wing shape. We suggest that evolution of hind wing shape in males is accelerated by sexual selection on pre-copulatory displays and that this acceleration is reflected in females due to genetic correlations that somehow link the rates of wing shape evolution in the two sexes, but not the wing shapes themselves.  相似文献   

7.
Closely related species of lycaenid butterflies are determinable, in part, by subtle differences in wing pattern. We found that female wing patterns can act as an effective mate‐recognition signal in some populations of two recently diverged species. In field experiments, we observed that males from a Lycaeides idas population and an alpine population of L. melissa preferentially initiate courtship with conspecific females. A morphometric study indicated that at least two wing pattern elements were important for distinguishing the two species: hindwing spots and orange crescent‐shaped pattern elements called aurorae. We deceived male L. idas into initiating courtship with computer generated paper models of heterospecific females when these pattern elements were manipulated, indicating that the wing pattern elements that define the diversity of this group can be effective mate recognition signals.  相似文献   

8.
Co‐occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species‐specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species‐specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co‐occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co‐occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.  相似文献   

9.
This research focused on how adult female brown‐headed cowbirds, Molothrus ater, regulate social feedback on a group level to shape the development of male song. Specifically, females produce rapid wing movements in response to male song, termed ‘wing strokes,’ which have been shown to shape male song and predict song quality. These effects have been documented in captive dyads and triads, but not in more naturalistic flocks, where song development actually occurs. Here, we studied wing stroking in small seminatural flocks of differing female‐to‐male ratios. Despite differences in the number of females and their social selectivity, the same pattern of female feedback emerged in seven of eight flocks: One female produced the majority of wing strokes to male song, making her the primary wing stroker in her flock. Previous studies on large flocks have demonstrated females to facilitate male song improvisation and development if they exhibited higher social selectivity by approaching immature males less. Here, we found that primary wing strokers were indeed more socially selective than non‐primary wing strokers. This research is the first to document social stimulation being facilitated at the group level to ensure that more highly selective females deliver the most feedback.  相似文献   

10.
Abstract 1. Diversification of some highly host‐specific herbivorous insects may occur in allopatry, without shifts in host use. Such allopatric divergence may be accelerated by sexual selection operating on courtship displays. Wing size and shape may affect visual and vibrational courtship displays in tephritid fruit flies. Geometric morphometric methods were used to examine wings of six sympatric cryptic species in the neotropical genus Blepharoneura. All six species feed on flowers of the same species of host (Gurania spinulosa), a neotropical vine in the Cucurbitaceae. Three of the fly species court and mate in close proximity on the host. Thus, courtship behaviours could serve as important reproductive isolating mechanisms. Two sets of hypotheses were tested: (i) species differ in wing shape and wing size; and (ii) species are sexually dimorphic in wing size and wing shape. Wing size differed among a few species, but wing shape differed significantly among all six species. Sexual dimorphism in wing size was found in only one species, but sexual dimorphism in wing shape was found in two of the three species known to court on the same host plant. In the two sexually dimorphic species, wing shape differed among males, but not among females. This suggests that selection for reproductive character displacement might accelerate divergence in wing shape.  相似文献   

11.
This study compared prolonged swimming performance (Ucrit) between male and female Danio rerio, and characterized how body shape was associated with this performance measure in each sex. When swimming in small (n = 6) mixed‐sex groups at 28° C, males swam, on average, over 10 cm s?1 faster than females despite being significantly smaller. Body shape was sexually dimorphic, with males and females exhibiting small, but statistically significant differences in most aspects of body shape. Body shape explained 18 and 43% of the variation in Ucrit among males and females. In general, effects of body shape on swimming performance appeared to be sex limited, whereby different aspects of body shape affected performance in each sex, although the contribution of the distance between pelvic and anal fins to swimming performance was weakly sexually antagonistic.  相似文献   

12.
Summary The presence and extent of sexual dimorphisms in body form (size and shape) of adult macroteiid lizards were investigated. Males were significantly larger than females in the temperate species, Cnemidophorus tigris, and in the tropical species, Ameiva ameiva and C. ocellifer. Young adult C. tigris males grew faster than young adult females within and between reproductive seasons. Adult males of all species had larger heads than adult females of the same body size; this difference increased with body size. Moreover, male C. tigris were heavier than females of the same snout-vent length. The causes and consequences of the sexual dimorphisms were also examined. The possible causes of body size are especially numerous, and distinguishing the relative influences of the various causal selection factors on body size is problematical. Nevertheless, observational field data were used to tentatively conclude that intrasexual selection was the cause of larger body size of C. tigris males relative to females because (1) larger males won in male aggressive interactions, (2) the winning males gained access to more females by repelling competitors and by female acceptance, (3) larger males consequently had higher reproductive success, and (4) other hypothetical causes of larger male size were unsupported.  相似文献   

13.
Acoustic communication in burrowing petrels has been poorly studied. However, as for many other bird species, acoustic communication seems to play an essential role in social interactions during the breeding season of these seabirds. Bachelor males call from their burrow, likely to attract females, but also when vocally challenged by other males. Calling in the breeding colony exposes petrels to high predation risks and thus it should provide an important benefit. The present study focuses on the informative content of males’ calls in the blue petrel Halobaena caerulea and the Antarctic prion Pachyptila desolata, two monogamous petrel species producing a single egg per year. We tested the hypotheses that acoustic parameters of a male's calls 1) reflect phenotypic characteristics, and 2) bear an individual vocal signature. To do so, we first tested on both species the relationships between seven morphometric measurements and 11 acoustic parameters using multivariate analyses. Second, we performed a between‐class analysis and calculated the potential of individuality coding (i.e. the ratio between intra‐ and inter‐individual variabilities) for acoustic parameters in both spectral and temporal domains. Results show acoustic parameters (especially energy quartiles, call duration, and syllable or phrase rate) reflect the caller's body size, bill morphology and wing morphology in both species. Considering the seeming pertinence of wing morphology, we suggest wing area may be a more relevant trait to consider than wing length when studying soaring birds. The results support the idea that energy quartiles, phrase rate and call duration also code for individual identity. Information carried by males’ calls might play a role in social interactions, such as burrow defence (e.g. male‐male competition, neighbour‐stranger discrimination) and/or female mate choice.  相似文献   

14.
Aspects of the nymphal/adult developmental change were investigated in biometric studies of several species of Plecoptera: Nemouridae near Schlitz, Hesse, Germany. Preliminary information on the mayfly, Baetis vernus Curtis, is also provided. Nemourid nymphs pass through 3 wing bearing stages before reaching adulthood. Instars can be identified by their characteristic shapes, as expressed by the wing length/head width (WL/HW) ratio. Size does not allow instar discrimination, mainly due to sexual size differences. HW is ca 10% larger in last instar female than in male nemourid nymphs; exuviae shed at the moult to adult represent about 14% of nymphal ash free dry weight (AFDW). Biomass lost with exuviae during the many larval moults should be accounted for in estimates of production. Freshly emerged nemourid females are about 6% larger and 30% heavier than males. The HW/AFDW relationship is the same in both sexes. Through terrestrial feeding during adult life, males double their weight on average. Mature females are up to three times heavier than freshly emerged ones. They invest about 30% of their final AFDW in reproduction.Shape of last instar nymphal Baetis was expressed as the ratio wing length/mesonotum length. It is size-dependent, a characteristic, instar-specific shape may not occur in this mayfly. Nymphal and subimaginal exuviae together represent about 14% of last instar nymphal dry weight. Females of Baetis are about 55% heavier than males. Unlike in Plecoptera, the size/weight (ML/AFDW) relationship differs between sexes.  相似文献   

15.
Phenotypic divergence between closely related species has long interested biologists. Taxa that inhabit a range of environments and have diverse natural histories can help understand how selection drives phenotypic divergence. In butterflies, wing color patterns have been extensively studied but diversity in wing shape and size is less well understood. Here, we assess the relative importance of phylogenetic relatedness, natural history, and habitat on shaping wing morphology in a large dataset of over 3500 individuals, representing 13 Heliconius species from across the Neotropics. We find that both larval and adult behavioral ecology correlate with patterns of wing sexual dimorphism and adult size. Species with solitary larvae have larger adult males, in contrast to gregarious Heliconius species, and indeed most Lepidoptera, where females are larger. Species in the pupal‐mating clade are smaller than those in the adult‐mating clade. Interestingly, we find that high‐altitude species tend to have rounder wings and, in one of the two major Heliconius clades, are also bigger than their lowland relatives. Furthermore, within two widespread species, we find that high‐altitude populations also have rounder wings. Thus, we reveal novel adaptive wing morphological divergence among Heliconius species beyond that imposed by natural selection on aposematic wing coloration.  相似文献   

16.
Ewa Simon 《ZooKeys》2013,(319):269-281
The fore wings of scale insect males possess reduced venation compared with other insects and the homologies of remaining veins are controversial. The hind wings are reduced to hamulohalterae. When adult males are prepared using the standard methods adopted to females and nymphs, i.e. using KOH to clear the specimens, the wings become damaged or deformed, an so these structures are not usually described or illustrated in publications. The present study used dry males belonging to seven species of the family Coccidae to check the presence of stable, structural colour patterns of the wings. The visibility of the wing interference patterns (WIP), discovered in Hymenoptera and Diptera species, is affected by the way the insects display their wings against various backgrounds with different light properties. This frequently occurring taxonomically specific pattern is caused by uneven membrane thickness and hair placement, and also is stabilized and reinforced by microstructures of the wing, such as membrane corrugations and the shape of cells. The semitransparent scale insect’s fore wings possess WIPs and they are taxonomically specific. It is very possible that WIPs will be an additional and helpful trait for the identification of species, which in case of males specimens is quite difficult, because recent coccidology is based almost entirely on the morphology of adult females.  相似文献   

17.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

18.
Many captive chimpanzees (Pan troglodytes) are subjectively considered to be overweight or obese. However, discussions of obesity in chimpanzees are rare in the literature, despite the acknowledged problem. No study to date has systematically examined obesity in captive chimpanzees. This project develops guidelines for defining obesity in captive chimpanzees through the examination of morphometric and physiologic characteristics in 37 adult female and 22 adult male chimpanzees. During each animal's biannual physical exam, morphometric data was collected including seven skinfolds (mm), body mass index (BMI), waist‐to‐hip ratio (WHR), and total body weight (kg). The morphometric characteristics were correlated with triglycerides and serum glucose concentration, to test the utility of morphometrics in predicting relative obesity in captive chimpanzees. Abdominal skinfold (triglyceride: F=3.83, P=0.05; glucose: F=3.83, P=0.05) and BMI (triglyceride: F=10.42, p=0.003; glucose: F=6.20, P=0.02) were predictive of increased triglycerides and serum glucose in females; however no morphometric characteristics were predictive of relative obesity in males. Results suggest that no males in this population are overweight or obese. For females, there were additional significant differences in morphometric (skinfolds, BMI, WHR, total body weight) and physiologic measurements (systolic and diastolic blood pressure, red blood cells) between individuals classified overweight and those classified non‐overweight. Skinfold measurements, particularly abdominal, seem to be an accurate measure of obesity and thus potential cardiovascular risk in female chimpanzees, but not males. By establishing a baseline for estimated body fat composition in female captive chimpanzees, institutions can track individuals empirically determined to be obese, as well as obesity‐related health problems. Zoo Biol 0:1–12, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

19.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   

20.
Larger male Caribbean fruit flies are more likely to be chosen as mates and defeat rivals in territorial contests. Yet males are smaller than females. Adaptive explanations for relatively small male size include (1) acceleration of male development to maximize female encounter rates, (2) selection for greater female size to increase fecundity, and (3) selection for body sizes most suitable for sexually dimorphic degrees of mobility, speed, and distance flight. None of these unambiguously accounts for the degree of sexual dimorphism. Male development is not accelerated relative to that of females. On average, males remain inside fruit longer than females and those males with extended development periods are smaller than more rapidly developing individuals. There is no evidence that female enlargement alone, presumably for greater fecundity, has generated the degree of dimorphism in the Caribbean fruit fly or other fruit flies. The relationship between dimorphism and mean female body size in 27 species of Tephritidae is the opposite of what would be predicted if differences in dimorphism were due to differences in unilateral female enlargement. Larger size in a species or in one sex of a species may be an adaptation for extensive flight. In general, among 32 species of fruit flies, as body size increases, wing shape becomes progressively more suited for distance flight. However, there are important exceptions to this correlation. Both sexual selection and nonadaptive allometries may contribute to the range of dimorphisms within the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号