首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
DNA Barcoding is a powerful molecular biology tool for the identification of species, analysis of gene flow from within and between populations and evaluating species concepts. The process can be incorporated into a college genetics or bioinformatics core curriculum. Here we demonstrate how, by simply using Plecoptera, we actively engaged students in DNA extraction, amplification and DNA Barcoding. As a result, 38 new DNA sequences were accepted by an international DNA database, with potentially three of them being new species to the database. More importantly, through multiple assessment measurements, students showed a high degree of learning took place and that all student learning objectives were met.  相似文献   

2.
    
The compilation of a DNA barcoding library of Norwegian stonefly (Plecoptera) species revealed that Leuctra fusca (Linnaeus, 1758 Linnaeus, C. (1758), Systema naturae Per Regna Tria Naturae: Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis. Stockholm: Laurentius Salvius. [Google Scholar]) and Leuctra digitata Kempny, 1899 (Leuctridae) share haplotypes in northernmost Scandinavia. Phylogenetic analyses of the mitochondrial (mt) DNA barcode marker COI and the nuclear marker 28S show that the shared haplotypes must result from the introgression of a L. fusca mitochondrion into a L. digitata population on at least two occasions. Although mt introgression is widespread in animals, this represents the first documented case in Plecoptera. This study also included specimens of L. cf. fusca from the Sierra Nevada massif in Spain, a population previously known as L. carpentieri Despax, 1945. Their mt haplotypes are ca. 13% different from other European L. fusca. However, their 28S alleles are compatible with their morphological identification as L. fusca. In view of the possibility of mt introgression, the taxonomic status of this population remains undecided.  相似文献   

3.
DNA barcoding may be particularly important in influencing ecology, economic issues, and the fundamental crisis facing biodiversity as a standardized, species-level identification tool for taxonomy assessment. Trees play important roles in the conservation of many land ecosystems, the wood trade, and the definition of biogeographical processes; nevertheless, peculiar biological, evolutionary and taxonomical features will probably constitute an intriguing challenge to barcoders. We examined whether four marker regions (trnh-psba, rbcL, rpoc1, matK) proposed by the Consortium for the Barcode of Life (CBOL) matched species taxonomy in a preliminary tree biodiversity survey of Italian forested land. Our objective was to provide a test of future in situ applications of DNA barcodes by evaluating the efficacy of species discrimination under the criteria of uniformity of methods and natural co-occurrence of the species in the main forest ecosystems. Fifty-two species were included in a floristic study. We obtained 73% total discrimination success, with trnH-psbA as the best performing marker and oaks as the least responsive plants to the markers used. A further taxon-based study of Quercus (thirty specimens, 12 species) revealed that this genus is refractory to barcoding (0% discrimination success), a probable consequence of low variation rate at the plastid genome level, hybridization, and the incidence of biogeography. We conclude that some species-rich tree genera in small geographical regions may prove exceptionally difficult to barcode. Until more efficient markers are developed, we recommend that improved and diversified sampling (multiple locations of sympatric and co-occurring congenerics) be embraced as a timely and important goal for the precise assessment of haplotype specificity to facilitate the productive application of barcoding in practice.  相似文献   

4.
    
The Italian peninsula is a biodiversity hotspot, with its freshwater fish fauna characterized by high levels of local endemism. Two endemic fluvio‐lacustrine fishes of the genus Barbus (barbel, family Cyprinidae) have allopatric distributions in the Tyrrhenian and Adriatic basins of Italy. Barbus plebejus inhabits the mid‐ to northern Adriatic basins, while B. tyberinus is widespread in all central‐northern basins draining into the Tyrrhenian Sea. For basins in Southern Italy draining into the southern parts of these seas, there remains a knowledge gap on their barbel populations due to no previous genetic and morphological studies, despite their apparent biogeographic isolation. Correspondingly, this study quantified the presence and distribution of barbels in the Adriatic and Tyrrhenian basins of Southern Italy through genetic and morphological analyses of 197 fish sampled across eight populations. Testing of how local isolation has influenced the evolution and persistence of these populations was completed by examining sequence variation at two mitochondrial loci (cytochrome b and D‐loop) and performing geometric morphometric analyses of body shape, plus measuring 11 morphometric and meristic characters. Phylogenetic and morphological analyses revealed the presence of two genetically distinct lineages that differed significantly from adjacent B. tyberinus and B. plebejus populations. These two new taxa, here described as SI1 and SI2 Barbus lineages, are highly structured and reflect a complex mosaic biogeographic pattern that is strongly associated with the underlying hydrographical scenarios of the basins. The geographic isolation of these basins thus has high evolutionary importance that has to be considered for maintaining endemism.  相似文献   

5.
    
Leuctra dylani sp. n. from Trentino-Alto Adige, Italy, is described and illustrated.  相似文献   

6.
    
Mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) are prominent representatives of aquatic macroinvertebrates, commonly used as indicator organisms for water quality and ecosystem assessments. However, unambiguous morphological identification of EPT species, especially their immature life stages, is a challenging, yet fundamental task. A comprehensive DNA barcode library based upon taxonomically well‐curated specimens is needed to overcome the problematic identification. Once available, this library will support the implementation of fast, cost‐efficient and reliable DNA‐based identifications and assessments of ecological status. This study represents a major step towards a DNA barcode reference library as it covers for two‐thirds of Germany's EPT species including 2,613 individuals belonging to 363 identified species. As such, it provides coverage for 38 of 44 families (86%) and practically all major bioindicator species. DNA barcode compliant sequences (≥500 bp) were recovered from 98.74% of the analysed specimens. Whereas most species (325, i.e., 89.53%) were unambiguously assigned to a single Barcode Index Number (BIN) by its COI sequence, 38 species (18 Ephemeroptera, nine Plecoptera and 11 Trichoptera) were assigned to a total of 89 BINs. Most of these additional BINs formed nearest neighbour clusters, reflecting the discrimination of geographical subclades of a currently recognized species. BIN sharing was uncommon, involving only two species pairs of Ephemeroptera. Interestingly, both maximum pairwise and nearest neighbour distances were substantially higher for Ephemeroptera compared to Plecoptera and Trichoptera, possibly indicating older speciation events, stronger positive selection or faster rate of molecular evolution.  相似文献   

7.
    
Trigonostigma somphongsi, a critically endangered species, is a rare and endemic fish in Thailand. This species had disappeared from its natural habitat for 20 years until 2006. The DNA barcodes or the fragments of cytochrome c oxidase I (COI) of T. somphongsi were investigated for species identification. The remaining two native species in the genus Trigonostigma, T. heteromorpha and T. espei were also identified using Boraras urophthalmoides as an outgroup species. The 707-bp fragments were successfully amplified and sequenced in all fifteen fish samples. In the genus Trigonostigma, the genetic distance within and between species ranged from 0.000 to 0.005 and 0.016 to 0.039, respectively. The lowest genetic distance (0.016) was between T. heteromorpha and T. espei, while the highest genetic distance (0.039) was between T. somphongsi and T. espei, followed by T. somphongsi and T. heteromorpha (0.035). The phylogenetic analysis showed that the relationship between the three Trigonostigma species (T. somphongsi was clearly separated from T. heteromorpha and T. espei) agreed with the morphological characteristics. These results suggest that DNA barcoding is an effective approach to identify Trigonostigma species for use in the conservation and management of fisheries.  相似文献   

8.
Although the genus Sycophila has broad host preferences, some species are specifically associated with figs as nonpollinator wasps. Because of their sexual dimorphism, morphological plasticity, cryptic mating behaviour and poorly known biology, species identifications are often uncertain. It is particularly difficult to match conspecific females and males. In this study, we employed two molecular markers, mitochondrial COI and nuclear ITS2, to identify Sycophila from six Chinese fig species. Morphological studies revealed 25 female and male morphs, while sequence results for both genes were consistent in supporting the presence of 15 species, of which 13 were host specialists and two used dual hosts. A single species of Sycophila was respectively found on four fig species, but six species were isolated from Ficus benjamina and a same number was reared from Ficus microcarpa. Sequence results revealed three male morphs in one species and detected two species that were overlooked by morphological analysis.  相似文献   

9.
    
The snakehead fish of the genus Channa are an important food fish in China. However, the molecular identification and phylogeny of this genus is poorly understood. Here, we present the utility of partial sequences of the COI gene for use in DNA barcoding for the identification of Channa individuals, which includes four species: Channa argus, Channa maculata, Channa asiatica, and Channa striata. A total of 19 haplotypes were identified in this study. The interspecific K2P distances were higher than intraspecific distances. The lowest interspecific distance (0.091) was between C. argus and C. maculata while the highest interspecific distance (0.219) was between C. argus and C. striata. No intraspecific–interspecific distance overlaps were observed, and a distinct barcoding gap was found between intraspecific and interspecific distances in each species. Our results showed that the partial COI gene is an effective DNA barcoding marker for identifying Channa species.  相似文献   

10.
11.
    
  相似文献   

12.
DNA barcoding of stylommatophoran land snails: a test of existing sequences   总被引:1,自引:0,他引:1  
DNA barcoding has attracted attention because it is a potentially simple and universal method for taxonomic assignment. One anticipated problem in applying the method to stylommatophoran land snails is that they frequently exhibit extreme divergence of mitochondrial DNA sequences, sometimes reaching 30% within species. We therefore trialled the utility of barcodes in identifying land snails, by analysing the stylommatophoran cytochrome oxidase subunit I sequences from GenBank. Two alignments of 381 and 228 base pairs were used to determine potential error rates among a test data set of 97 or 127 species, respectively. Identification success rates using neighbour‐joining phylogenies were 92% for the longer sequence and 82% for the shorter sequence, indicating that a high degree of mitochondrial variation may actually be an advantage when using phylogeny‐based methods for barcoding. There was, however, a large overlap between intra‐ and interspecific variation, with assignment failure (per cent of samples not placed with correct species) particularly associated with a low degree of mitochondrial variation (Kimura 2‐parameter distance < 0.05) and a small GenBank sample size (< 25 per species). Thus, while the optimum intra/interspecific threshold value was 4%, this was associated with an overall error of 32% for the longer sequences and 44% for the shorter sequences. The high error rate necessitates that barcoding of land snails is a potentially useful method to discriminate species of land snail, but only when a baseline has first been established using conventional taxonomy and sample DNA sequences. There is no evidence for a barcoding gap, ruling out species discovery based on a threshold value alone.  相似文献   

13.
DNA metabarcoding enables efficient characterization of species composition in environmental DNA or bulk biodiversity samples, and this approach is making significant and unique contributions in the field of ecology. In metabarcoding of animals, the cytochrome c oxidase subunit I (COI) gene is frequently used as the marker of choice because no other genetic region can be found in taxonomically verified databases with sequences covering so many taxa. However, the accuracy of metabarcoding datasets is dependent on recovery of the targeted taxa using conserved amplification primers. We argue that COI does not contain suitably conserved regions for most amplicon-based metabarcoding applications. Marker selection deserves increased scrutiny and available marker choices should be broadened in order to maximize potential in this exciting field of research.  相似文献   

14.
DNA条形码技术在植物中的研究现状   总被引:1,自引:0,他引:1  
闫化学  于杰 《植物学通报》2010,45(1):102-108
DNA条形码技术(DNA barcoding)是用短的DNA片段对物种进行识别和鉴定的分子生物学技术。在动物研究中该技术已经成功应用于利用线粒体细胞色素c氧化酶亚基I(COI)进行物种鉴定和发现隐种或新物种。相对于动物, COI基因在高等植物中进化速率较慢, 因此植物条形码研究以叶绿体基因组作为重点, 但目前还处于寻找合适的基因片段阶段。许多学者对此进行了积极的探索, 报道了多种植物条形码的候选片段或组合, 但还没有获得满足所有标准的特征位点片段。该文介绍了DNA条形码的标准、优点、工作流程及数据分析方法, 总结了DNA条形码在植物中的研究现状。  相似文献   

15.
    
For tropical wild biodiversity to survive, it must occupy a large terrain, be permanently endowed, and be integrated with its local, national, and international society. Among other things, integration will be enormously facilitated by giving bioilliterate humanity—all seven billion of us—the ability to read wild biodiversity anywhere any time for the personal cost of a pocket comb. That is true universal bioliteracy. DNA barcoding is the technology for this, and a personal or an institutional decision to sustain its cheap cost will cut the Gordian knot.  相似文献   

16.
    
The Microgastrinae are a hugely diverse subfamily of endoparasitoid wasps of lepidopteran caterpillars. They are important in agriculture as biological control agents and play a significant ecological role in the regulation of caterpillar populations. Whilst the group has been the focus of intensive rearing and DNA barcoding studies in the Northern Hemisphere, the Australian fauna has received little attention. In total, 99 species have been described from or have been introduced into Australia, but the real species diversity for the region is clearly much larger than this. In this study, museum ethanol samples and recent field collections were mined for hundreds of specimens of microgastrine wasps, which were then barcoded for the COI region, ITS2 ribosomal spacer and the wingless nuclear genes, using a pooled sequencing approach on an Illumina Miseq system. Full COI sequences were obtained for 525 individuals which, when combined with 162 publicly available sequences, represented 417 haplotypes, and a total of 236 species were delimited using a consensus approach. By more than doubling the number of known microgastrine wasp species in Australia, our study highlights the value of DNA barcoding in the context of employing high‐throughput sequencing methods of bulk ethanol museum collections for biodiversity assessment.  相似文献   

17.
苹果园鳞翅目夜蛾科DNA条形码鉴定   总被引:1,自引:0,他引:1  
为了检验DNA条形码在鳞翅目夜蛾科蛾类鉴定中的可行性,本文对采自北京昌平苹果园内的夜蛾科14种71头蛾类标本分别提取了DNA,并扩增了线粒体cox1及核基因28S,利用系统发育树、遗传距离、阈值等方法进行了鉴定和比较分析。同时,检验了目前BOLD系统的鉴定成功率。实验表明,基于cox1基因和BOLD系统的鉴定成功率达到了100%,而基于28S则很低,为64.8%。用不同方法构建的系统发育树,鉴定结果均相同。93%的种内遗传距离小于1%,94%的种间遗传距离为大于3%,种内种间的遗传距离形成明显的3%阈值现象。  相似文献   

18.
DNA-based identifications have been employed across broad taxonomic ranges and provide an especially useful tool in cases where external identification may be problematic. This study explored the utility of DNA barcoding in resolving skate species found in Atlantic Canadian waters. Most species were clearly resolved, expanding the utility for such identification on a taxonomically problematic group. Notably, one genus (Amblyraja) contained three of four species whose distributions do not overlap that could not be readily identified with this method. On the other hand, two common and partially sympatric species (Little and Winter skates) were readily identifiable. There were several instances of inconsistency between the voucher identification and the DNA sequence data. In some cases, these were at the intrageneric level among species acknowledged to be prone to misidentification. However, several instances of intergeneric discrepancies were also identified, suggesting either evidence of past introgressive hybridization or misidentification of vouchered specimens across broader taxonomic ranges. Such occurrences highlight the importance of retaining vouchered specimens for subsequent re-examination in the light of conflicting DNA evidence.  相似文献   

19.
张珺楠  卢欣 《生物资源》2023,45(4):321-327
鸟类在全球广泛分布,不同鸟类物种利用的食物类群存在很大差异,而食性研究是动物营养学和生态学领域的重要研究内容。本文对一些传统鸟类食性鉴别方式及其不足进行回顾,传统鸟类食性鉴别方式包含扎颈法、剖胃法、粪便收集法、相机记录法等。随着测序技术的高速发展,DNA宏条形码技术出现,并广泛应用于动物食性研究。近些年来,该技术也被应用于鸟类食性研究中。本文综述了DNA条形码和DNA宏条形码的操作原理和条件,对鸟类食性研究中的DNA条形码与引物的选择做了详细介绍。对比传统鉴别方法,DNA宏条形码技术降低了物种鉴定难度,减少了人为影响因素,提高了目标样本中物种的鉴定效率,能对粪便、胃容物等混合或不成型样本进行分析。另一方面,在扩增多物种混合的DNA样品中的目标片段时,可能出现偏离,造成结果的不确定性,并且难以根据结果得出较准确各食物组分的比例。未来在使用宏条形码技术对鸟类食性的分析中,可结合其他方法改善对食物的量化以及食物属性的判断。  相似文献   

20.
The use of DNA analysis in forensic investigations into animal persecution and biodiversity conservation is now commonplace and crimes such as illegal collection/smuggling, poaching, and illegal trade of protected species are increasingly being investigated using DNA based evidence in many countries. Using DNA analysis, it is possible to identify the species and geographical origin (i.e. population) of a forensic sample, and to also individualise the sample with high levels of probability. Despite extensive literature in animal species, there is unfortunately a serious lack of information on plant species, with only a handful of recent studies. In this review, I detail the applications and diverse forensic investigations that have been carried out to date whilst also highlighting recent developmental studies which offer forensic potential for many species in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号