首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of femoral component malrotation on patellar biomechanics   总被引:1,自引:0,他引:1  
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components and may, therefore, reduce any associated patellofemoral maltracking. To test this hypothesis, we developed a dynamic model of quadriceps-driven open-kinetic-chain extension in a knee implanted with arthroplasty components. The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees. Knee kinematics and patellofemoral forces were measured after simulating malrotation (±3°) of the femoral component. Rotational alignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. External rotation of the femoral component increased patellofemoral lateral tilt, lateral shift, and lateral shear forces. Up to 21° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating platform does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. These results support the value of improving existing methodologies for accurate femoral component alignment in total knee arthroplasty.  相似文献   

2.
The value of plain radiographs, digital subtraction arthrography and radionuclide arthrography was analysed in 23 cases of failed total knee arthroplasty. The preoperative diagnosis was compared with the intraoperative assessment. Sensitivity, specificity and the positive and negative predictive value for assessing a loose component were determined separately for the femoral and tibial components. At revision we found 13 loose femoral and 12 loose tibial implants. In eight cases both components were unstable. Plain radiography had a sensitivity of 77% for loosening of the femoral and 83% for the tibial component; digital subtraction arthrography 77% for the femoral and 8% for the tibial component and radionuclide arthrography 31% and 8%. The specificity for plain radiography was 90% for the femoral and 72% for the tibial implant. For subtraction arthrography it was 50% and 82% and for subtraction arthrography 70% and 82%. Radiography had the highest positive and negative predictive values for both components compared with the other two techniques. As a diagnostic tool to detect implant loosening, plain radiography is the most effective in this study. Subtraction arthrography and radionuclide arthrography are not suitable for use as routine methods for detection of total knee arthroplasty loosening.  相似文献   

3.
An automated image-matching technique is presented to assess alignment of the entire lower extremity for normal and implanted knees and the positioning of implants with respect to bone. Sawbone femur and tibia and femoral and tibial components of a total knee arthroplasty system were used. Three spherical markers were attached to each sawbone and each component to define the local coordinate system. Outlines of the three-dimensional (3D) bone models and component computer-aided design (CAD) models were projected onto extracted contours of the femur, tibia, and implants in frontal and oblique X-ray images. Three-dimensional position of each model was recovered by minimizing the difference between the projected outline and the contour. Median values of the absolute error in estimating relative positions were within 0.5 mm and 0.6° for the femur with respect to the tibia, 0.5 mm and 0.5° for the femoral component with respect to the tibial component, 0.6 mm and 0.6° for the femoral component with respect to the femur, and 0.5 mm and 0.4° for the tibial component with respect to the tibia, indicating significant improvements when compared to manually obtained results.  相似文献   

4.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

5.
目的:探讨一种新型的适合于儿童的非骨水泥固定型股骨柄设计特征,并通过随访获得其临床效果。方法:选取2010年9月~2013年4月在我科植入新型非骨水泥股骨柄的6名儿童患者,其中男1例,女5例;年龄8.5±3.2岁(5~11岁)。病理诊断结果骨肉瘤患者5例,恶性神经鞘瘤患者1例;右股骨下端患者5例,左股骨下端患者1例;其中一例患者术前有病理骨折。6例患者在我科行双动半膝关节置换术,其中股骨下端均采用了新型非骨水泥假体柄。采用Enneking骨肌肉肿瘤置换后下肢功能评定标准对患肢行功能评价,影像学重点评估股骨柄在髓腔放置位置是否得当、股骨柄假体有无松动、有无应力遮挡、骨溶解等现象,并测量术后患者患肢短缩畸形数据。结果:6例患者随访时间32个月(14~54个月),除1例5岁女童术前肢体条件较差在术后14个月行膝关节融合手术,其余无翻修病例,置换关节均无感染、折断等现象。MSTS评分21.33分;射线片示所有患者股骨髓腔内假体柄放置位置满意,股骨侧及胫腓骨侧假体周围未见骨溶解。结论:新型非骨水泥固定型股骨柄设计合理,早期稳定性可,后期可取得满意的生物固定效果。  相似文献   

6.
Computational models have recently been developed to replicate experimental conditions present in the Stanmore knee wear simulator. These finite element (FE) models, which provide a virtual platform to evaluate total knee replacement (TKR) mechanics, were validated through comparisons with experimental data for a specific implant. As with any experiment, a small amount of variability is inherently present in component alignment, loading, and environmental conditions, but this variability has not been previously incorporated in the computational models. The objectives of the current research were to assess the impact of experimental variability on predicted TKR mechanics by determining the potential envelope of joint kinematics and contact mechanics present during wear simulator loading, and to evaluate the sensitivity of the joint mechanics to the experimental parameters. In this study, 8 component alignment and 4 experimental parameters were represented as distributions and used with probabilistic methods to assess the response of the system, including interaction effects. The probabilistic FE model evaluated two levels of parameter variability (with standard deviations of component alignment parameters up to 0.5mm and 1 degrees ) and predicted a variability of up to 226% (3.44mm) in resulting anterior-posterior (AP) translation, up to 169% (4.30 degrees ) in internal-external (IE) rotation, but less than 10% (1.66MPa) in peak contact pressure. The critical alignment parameters were the tilt of the tibial insert and the IE rotational alignment of the femoral component. The observed variability in kinematics and, to a lesser extent, contact pressure, has the potential to impact wear observed experimentally.  相似文献   

7.
Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implanted knee to instantaneously predict joint mechanics in an efficient manner. Finite element methods were combined with Latin hypercube sampling and regression analyses to produce modeling equations relating nine implant design and six surgical alignment parameters to tibiofemoral (TF) joint mechanics outcomes during a deep knee bend. A SFM was developed and TF contact mechanics, kinematics, and soft tissue loads were instantaneously predicted from the model. Average normalized root-mean-square error predictions were between 2.79% and 9.42%, depending on the number of parameters included in the model. The statistical shape-function model generated instantaneous joint mechanics predictions using a maximum of 130 training simulations, making it ideally suited for integration into a patient-specific design and alignment optimization pipeline. Such a tool may be used to optimize kinematic function to achieve more natural motion or minimize implant wear, and may aid the engineering and clinical communities in improving patient satisfaction and surgical outcomes.  相似文献   

8.
Attaching tantalum markers to prostheses for Roentgen stereophotogrammetry (RSA) may be difficult and is sometimes even impossible. In this study, a model-based RSA method that avoids the attachment of markers to prostheses is presented and validated. This model-based RSA method uses a triangulated surface model of the implant. A projected contour of this model is calculated and this calculated model contour is matched onto the detected contour of the actual implant in the RSA radiograph. The difference between the two contours is minimized by variation of the position and orientation of the model. When a minimal difference between the contours is found, an optimal position and orientation of the model has been obtained. The method was validated by means of a phantom experiment. Three prosthesis components were used in this experiment: the femoral and tibial component of an Interax total knee prosthesis (Stryker Howmedica Osteonics Corp., Rutherfort, USA) and the femoral component of a Profix total knee prosthesis (Smith & Nephew, Memphis, USA). For the prosthesis components used in this study, the accuracy of the model-based method is lower than the accuracy of traditional RSA. For the Interax femoral and tibial components, significant dimensional tolerances were found that were probably caused by the casting process and manual polishing of the components surfaces. The largest standard deviation for any translation was 0.19mm and for any rotation it was 0.52 degrees. For the Profix femoral component that had no large dimensional tolerances, the largest standard deviation for any translation was 0.22mm and for any rotation it was 0.22 degrees. From this study we may conclude that the accuracy of the current model-based RSA method is sensitive to dimensional tolerances of the implant. Research is now being conducted to make model-based RSA less sensitive to dimensional tolerances and thereby improving its accuracy.  相似文献   

9.
Fluoroscopic imaging is commonly used for assessing relative motions of orthopaedic implants. One limiting factor to in vivo model-based roentgen stereophotogrammetric analysis of total knee arthroplasty is the need for 3D models of the implants.The 3D models of the implant components must be reverse-engineered, if not provided by the company, which makes this method impractical for a clinical study involving many types or sizes of implants. This study introduces a novel feature-based methodology that registers the features at the implant-bone or implant-cement interface of the components that have elementary shapes. These features include pegs with hemispherical heads, and straight, circular or curved edges located on flat faces of the box of the femoral component or the stem geometry of the tibial component. Software was developed to allow easy registration of these features through a graphical user interface. The accuracy and precision of registration for multiple flexion angles from 0 to 120 deg was determined with reference to registered poses of the implants through experiments on bone replica models and also on a cadaver specimen implanted with total knee prostheses. When compared to an equivalent bi-planar model-based registration, the results were comparable: The mean accuracy of this feature-based method was 1.45 deg and 1.03 mm (in comparison to 0.95 deg and 1.32 mm for the model-based approach), and the mean precision was 0.57 deg and 0.26 mm (in comparison to 0.42 deg and 0.44 mm for the model-based approach).The methodology and the developed software can easily accommodate different design of implants with various fixation features. This method can facilitate in vivo kinematic analysis of total knee arthroplasty by eliminating the need for 3D models of the implant components.  相似文献   

10.
Few in-vitro studies have investigated changes in kinematics caused by total knee replacement (TKR) implantation. The advent of surgical navigation systems allows implant position to be measured accurately and the effects of alteration of TKR position and alignment investigated. A test rig and protocol were developed to compare the kinematics of TKR-implanted knees for different femoral component positions. The TKR was implanted and the component positions documented using a navigation system. The quadriceps was tensed and the knees were flexed and extended manually. Torques and drawer forces were applied to the tibia during knee flexion–extension, while recording the kinematics with the navigation system. The implant was removed and replaced on an intramedullary fixation that allowed proximal–distal, and internal–external rotation of the femoral component without conducting a repeated arthrotomy on the knee. The implant was repositioned using the navigation system to reproduce the previously achieved normally navigated position and the kinematics were recorded again. The recorded kinematics of the knee were not significantly different between both normal implantation and intramedullary remounting for tibial internal–external rotation, varus–valgus angulation, or posterior drawer, at any angle of knee flexion examined. Anterior drawer was increased approximately 2.5 mm across the range 20–35° knee flexion (p<0.05), but was otherwise not significantly different. This method of navigating implant components and of moving them within the closed knee (thus avoiding artefactual effects of repeated soft tissue manipulations) can now be used to quantify the effect on kinematics of alteration of the position of the femoral component.  相似文献   

11.
The application of 3D printing patient specific instrumentation model in total knee arthroplasty was explored to improve the operative accuracy and safety of artificial total knee arthroplasty. In this study, a total of 52 patients who need knee replacement were selected as the study objects, and 52 patients were divided into experimental group and control group. First, the femoral mechanical-anatomical angle (FMAA), lateral femoral angle (LFA), hip-knee-ankle angle (HKA), femorotibial angle (FTA) of research objects in both groups were measured. Then, the blood loss during the operations, drainage volume after operations, total blood loss, hidden blood loss, and hemoglobin decrease of the experiment group and the control group were measured and calculated. Finally, the postoperative outcomes of patients who underwent total knee arthroplasty were evaluated. The results showed that before the operations, in the PSI group, the femoral mechanical-anatomical angle (FMAA) was (6.9 ± 2.4)°, the lateral femoral angle (LFA) was (82.4 ± 1.6)°, the hip-knee-ankle angle (HKA) was (166.4 ± 1.4)°, and the femorotibial angle (FTA) was (179.5 ± 7.3)°. In the CON group, the FMAA was (5.8 ± 2.4)°, the LFA was (81.3 ± 2.1)°, the HKA was (169.5 ± 1.9)°, and the FTA was (185.4 ± 5.4)°. The differences in these data between the two groups were not statistically significant (P > 0.05). After the operations, in the PSI group, the total blood loss, the hidden blood loss, and the hemoglobin (Hb) decrease were respectively (420.2 ± 210.5), (240.5 ± 234.5), and (1.7 ± 0.9); in the CON group, the total blood loss, the hidden blood loss, and the Hb decrease were respectively (782.1 ± 340.4), (450.9 ± 352.6), and (2.9 ± 1.0). These data of both groups were statistically significant (P < 0.05). Therefore, it can be seen that the 3D printing patient specific instrumentation model can effectively simulate the lower limb coronal force line and was highly consistent of the preoperative software simulation plan. In addition, the random interviews of patients who underwent total knee arthroplasty showed that the knees of patients had recovered well. The application of 3D printing patient specific instrumentation model in artificial total knee arthroplasty can effectively improve the operative accuracy and safety, and the clinical therapeutic effects were significant.  相似文献   

12.
The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.  相似文献   

13.
Unbalanced contact force on the tibial component has been considered a factor leading to loosening of the implant and increased wear of the bearing surface in total knee arthroplasty. Because it has been reported that good alignment cannot guarantee successful clinical outcomes, the soft tissue balance should be checked together with the alignment. Finite element models of patients' lower extremities were developed to analyse the medial and lateral contact force distribution on the tibial insert. The distributions for four out of five patients were not balanced equally, even though the alignment angles were within a clinically acceptable range. Moreover, the distribution was improved by changing soft tissue release and ligament tightening for the specific case. Integration of the biomechanical modelling, image matching and finite element analysis techniques with the patient-specific properties and various dynamic loading would suggest a clinically relevant pre-operative planning for soft tissue balancing.  相似文献   

14.
An instrumented tibial tray was developed that enables the measurement of six load components in a total knee arthroplasty (TKA). The design is fully compatible with a commonly available knee arthroplasty product since it uses the original tibial insert and femoral component. Two plates with hollow stems made from titanium alloy are separated by a small gap. Six semiconductor strain gages are used for measuring the load-dependent deformation of the inner hollow stem. A 9-channel telemetry unit with a radio-frequency transmitter is encapsulated hermetically in the cavity of the prosthesis. The telemetry is powered inductively and strain gage signals are transmitted via a small antenna at the tip of the implant. The mean sampling rate is 125Hz. The calibration of the prosthesis resulted in an accuracy better than 2% mean measuring error. Fatigue testing of the implant was performed up to 10 million loading cycles and showed no failure. The pending in vivo application will give further insight into the kinetics of TKA. The measured values will enhance the quality of future pre-clinical testing, numerical modeling in knee biomechanics and the patients' physiotherapy and rehabilitation.  相似文献   

15.
This study presents an optimized matching algorithm for a dual-orthogonal fluoroscopic image system used to determine six degrees-of-freedom total knee arthroplasty (TKA) kinematics in-vivo. The algorithm was evaluated using controlled conditions and standard geometries. Results of the validation demonstrate the algorithm's robustness and capability of realizing a pose from a variety of initial poses. Under idealized conditions, poses of a TKA system were recreated to within 0.02+/-0.01 mm and 0.02+/-0.03 deg for the femoral component and 0.07+/-0.09 mm and 0.16+/-0.18 deg for the tibial component. By employing a standardized geometry with spheres, the translational accuracy and repeatability under actual conditions was found to be 0.01+/-0.06 mm. Application of the optimized matching algorithm to a TKA patient showed that the pose of in-vivo TKA components can be repeatedly located, with standard deviations less than +/-0.12 mm and +/-0.12 deg for the femoral component and +/-0.29 mm and +/-0.25 deg for the tibial component. This methodology presents a useful tool that can be readily applied to the investigation of in-vivo motion of TKA kinematics.  相似文献   

16.
Restoration of normal patella kinematics is an important clinical outcome of total knee arthroplasty. Failure of the patella within total knee systems has been documented and, upon occurrence, often necessitates revision surgery. It is thus important to understand patella mechanics following implantation, subject to load states that are typically realized during walking and other gaits. Here, a computational model of the patella is developed and used to examine the effects of walking, stair ascent, and stair descent on the development of stress and contact pressure in the patella throughout the gait cycle. Motion of the patella was governed by a combination of kinematic and force control, based on knee flexion and patellofemoral joint reaction force data from the literature. Unlike most previous analyses of full gait, quasi-static equilibrium was enforced throughout the cycle. Results indicate that, though peak forces vary greatly between the three gaits, maximum contact pressure and von Mises stress are roughly equivalent. However, contact area is larger in stair ascent and descent than walking, as patellofemoral loading, implant geometry, and polyethylene yield increase conformity between the femoral component and patella. Additionally, maximum contact pressure does not coincide with maximum load except for the case of walking. Though specific to the implant design considered here, this result has important ramifications for patella testing and emphasizes the need to characterize patella mechanics throughout gait.  相似文献   

17.
Bone tunnel enlargement is a common phenomenon following reconstruction of the anterior cruciate ligament (ACL). Biomechanical and biological factors have been reported as potential causes of this problem. However, there is no analysis of forces between the graft and bone, as the graft changes direction at the bone tunnel entrance. The purpose of this study was to study these 'redirecting forces'. Magnetic resonance images of 10 patients with an ACL reconstruction (age: 26+/-6.8 years) were used to determine the angle between graft and drill holes. Vector analysis was used to calculate the direction and magnitude of the perpendicular component of the force between the bone tunnel and the graft at the entrance of the bone tunnel. Force components were projected into the radiographically important sagittal and coronal planes. Tension of ACL reconstructions was recorded during passive knee motion in 10 cadaveric knee experiments (age: 28.9+/-10.6 years) and the tension multiplied with the force component for each plane. Results are reported for the coronal and sagittal planes, respectively: For -10 degrees of extension, the percentages of graft tension were determined to be 17+/-7 (max: 26; min: 7%) and 26+/-9 (max: 39; min: 16%) for the tibia. They were 59+/-6 (max: 66; min: 48%) and 99+/-1 (max: 1.00; min: 99%) for the femur. Force components were 14.68+/-6.54 and 25.73+/-12.96 N for the tibial tunnel. For the femoral tunnel, they were 52.48+/-19.03 and 90.77+/-32.06 N. Percentages of graft tension and force components were significantly higher for the femoral tunnel compared with the tibial tunnel. Moreover, in the sagittal direction, force components for the femoral tunnel were significantly higher compared with the coronal plane (Wilcoxon test, p < 0.01). The differences in force components calculated in this study corresponds with the amount of tunnel enlargement in the radiographic planes in the literature providing evidence that biomechanical forces play a key role in postoperative tunnel expansion.  相似文献   

18.
Total knee arthroplasty (TKA) is a successful procedure for osteoarthritis. However, some patients (19%) do have pain after surgery. A finite element model was developed based on boundary conditions of a knee rig. A 3D-model of an anatomical full leg was generated from magnetic resonance image data and a total knee prosthesis was implanted without patella resurfacing. In the finite element model, a restarting procedure was programmed in order to hold the ground reaction force constant with an adapted quadriceps muscle force during a squat from 20° to 105° of flexion. Knee rig experimental data were used to validate the numerical model in the patellofemoral and femorotibial joint. Furthermore, sensitivity analyses of Young’s modulus of the patella cartilage, posterior cruciate ligament (PCL) stiffness, and patella tendon origin were performed. Pearson’s correlations for retropatellar contact area, pressure, patella flexion, and femorotibial ap-movement were near to 1. Lowest root mean square error for retropatellar pressure, patella flexion, and femorotibial ap-movement were found for the baseline model setup with Young’s modulus of 5 MPa for patella cartilage, a downscaled PCL stiffness of 25% compared to the literature given value and an anatomical origin of the patella tendon. The results of the conducted finite element model are comparable with the experimental results. Therefore, the finite element model developed in this study can be used for further clinical investigations and will help to better understand the clinical aspects after TKA with an unresurfaced patella.  相似文献   

19.
全膝关节置换术治疗骨关节炎   总被引:1,自引:0,他引:1  
目的 探讨人工全膝关节置换术治疗骨关节病的临床疗效。方法 对31例人工全膝关节置换术进行临床分析和总结,并应用HSS膝关节评分系统进行分析。结果 手术优良率为93.6%,患者术后在疼痛、功能及关节活动度等方面都有明显改善。结论 全膝关节置换术是治疗骨关节病的有效方法。  相似文献   

20.

Background  

One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号