首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Non-linear and anisotropic heart valve leaflet tissue mechanics manifest principally from the stratification, orientation, and inhomogeneity of their collagenous microstructures. Disturbance of the native collagen fiber network has clear consequences for valve and leaflet tissue mechanics and presumably, by virtue of their intimate embedment, on the valvular interstitial cell stress–strain state and concomitant phenotype. In the current study, a set of virtual biaxial stretch experiments were conducted on porcine pulmonary valve leaflet tissue photomicrographs via an image-based finite element approach. Stress distribution evolution during diastolic valve closure was predicted at both the tissue and cellular levels. Orthotropic material properties consistent with distinct stages of diastolic loading were applied. Virtual experiments predicted tissue- and cellular-level stress fields, providing insight into how matrix-to-cell stress transfer may be influenced by the inhomogeneous collagen fiber architecture, tissue anisotropic material properties, and the cellular distribution within the leaflet tissue. To the best of the authors’ knowledge, this is the first study reporting on the evolution of stress fields at both the tissue and cellular levels in valvular tissue and thus contributes toward refining our collective understanding of valvular tissue micromechanics while providing a computational tool enabling the further study of valvular cell–matrix interactions.  相似文献   

2.
A new 2D method to implement transient contact using Comsol Multiphysics (finite element analysis software that enables multiphysics simulations) is described, which is based on Hertzian contact. This method is compared to the existing (default) contact method that does not enable real transient simulations, but instead performs steady-state solutions where time is a constant. The two types of contact modelling have been applied to simple 2D biological heart valve models, undergoing strains in the region of 10% under 20 kPa pressure (applied over 0.3 s). Both the methods predicted comparable stress patterns, locations of peak stresses, deformations and directions of principal stress. The default contact method predicted slightly greater contact stresses, but spreads over a shorter surface length than the new contact method. The default contact method is useful for contact systems with little transient dependency, due to ease of use. However, where transient conditions are important the new contact method is preferred.  相似文献   

3.
In this article, the spectral features of first heart sounds (S1) and second heart sounds (S2), which comprise the mechanical heart valve sounds obtained after aortic valve replacement (AVR) and mitral valve replacement (MVR), are compared to find out the effect of mechanical heart valve replacement and recording area on S1 and S2. For this aim, the Welch method and the autoregressive (AR) method are applied on the S1 and S2 taken from 66 recordings of 8 patients with AVR and 98 recordings from 11 patients with MVR, thereby yielding power spectrum of the heart sounds. Three features relating to frequency of heart sounds and three features relating to energy of heart sounds are obtained. Results show that in comparison to natural heart valves, mechanical heart valves contain higher frequency components and energy, and energy and frequency components do not show common behaviour for either AVR or MVR depending on the recording areas. Aside from the frequency content and energy of the sound generated by mechanical heart valves being affected by the structure of the lungs–thorax and the recording areas, the pressure across the valve incurred during AVR or MVR is a significant factor in determining the frequency and energy levels of the valve sound produced. Though studies on native heart sounds as a non-invasive diagnostic method has been done for many years, it is observed that studies on mechanical heart valves sounds are limited. The results of this paper will contribute to other studies on using a non-invasive method for assessing the mechanical heart valve sounds.  相似文献   

4.
The aim of this study was to investigate the stress distribution generated in a veneer restoration of an upper central incisor compared to intact teeth using the finite element analysis after applying a lingual buccal loading at the incisal edge. Methods: Two models were developed: one model contained enamel, dentine, cementum, periodontal ligament, cortical and trabecullar bones, and the other model was a veneer restoration; both models were developed using MSC/Nastran software (MacNeal-Schwendler Corporation, Los Angeles, CA, USA) as the pre- and post-processor. A 10-N load was applied at the incisal edge from the lingual to the buccal side to simulate oral conditions in this area (protrusion). Results: Von Mises stresses were then analysed for three different regions: A-B (enamel elements under the veneer or second enamel layer), A′-B′ (buccal enamel and/or veneer element layer) and C-D (lingual enamel elements layer). A higher stress mode was observed for both models at the lingual cervical region. Conclusions: The presence of a veneer restoration on the incisors is a good alternative to mimic the behaviour of enamel under protrusion loading conditions. The use of veneers to replace enamel during rehabilitations is recommended.  相似文献   

5.
Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen–fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of  432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL.  相似文献   

6.
Abstract

Prestretch is observed in many soft biological tissues, directly influencing the mechanical behavior of the tissue in question. The development of this prestretch occurs through complex growth and remodeling phenomena, which yet remain to be elucidated. In the present study it was investigated whether local cell-mediated traction forces can explain the development of global anisotropic tissue prestretch in the mitral valve. Towards this end, a model predicting actin stress fiber-generated traction forces was implemented in a finite element framework of the mitral valve. The overall predicted magnitude of prestretch induced valvular contraction after release of in vivo boundary constraints was in good agreement with data reported on valvular retraction after excision from the heart. Next, by using a systematic variation of model parameters and structural properties, a more anisotropic prestretch development in the valve could be obtained, which was also similar to physiological values. In conclusion, this study shows that cell-generated traction forces could explain prestretch magnitude and anisotropy in the mitral valve.  相似文献   

7.
The structure and distribution of collagen fibres in chordae tendineae, anterior leaflet and annulus fibrous of human mitral valve has been investigated using high and small angle X-ray diffraction. The molecular packing of collagen in native mitral valve components is very similar to that in native rat tail tendon. The distribution and orientation of collagen fibres in unstretched and stretched specimens has been deduced by the arcing of the high and small angle meridional reflections. Collagen fibres, which are aligned along the chordae tendineae, are preferentially distributed along the branchings of the chordae into the anterior leaflet and then course towards the annulus fibrous. However, in the anterior leaflet a considerable amount of collagen fibres are organized in a tridimensional isotropic network even after high deformation of the tissue.  相似文献   

8.
Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field for conducting investigations through virtual computer-based simulations: in fact, nowadays, computational engineering is widely used to unravel many problems in the biomedical field of cardiovascular mechanics and specifically, minimally invasive procedures. In this study, we investigate a balloon-expandable valve and we propose a novel simulation strategy to reproduce its implantation using computational tools. Focusing on the Edwards SAPIEN valve in particular, we simulate both stent crimping and deployment through balloon inflation. The developed procedure enabled us to obtain the entire prosthetic device virtually implanted in a patient-specific aortic root created by processing medical images; hence, it allows evaluation of postoperative prosthesis performance depending on different factors (e.g. device size and prosthesis placement site). Notably, prosthesis positioning in two different cases (distal and proximal) has been examined in terms of coaptation area, average stress on valve leaflets as well as impact on the aortic root wall. The coaptation area is significantly affected by the positioning strategy ( ? 24%, moving from the proximal to distal) as well as the stress distribution on both the leaflets (+13.5%, from proximal to distal) and the aortic wall ( ? 22%, from proximal to distal). No remarkable variations of the stress state on the stent struts have been obtained in the two investigated cases.  相似文献   

9.
10.
Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 μm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.  相似文献   

11.
12.
Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm2 and post-transitional stiffness from 2 to 9 N/mm2. We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear behavior during isovolumic relaxation (IVR). Miniature radiopaque markers were sewn to the mitral annulus, AML, and papillary muscles in 8 sheep. Four-dimensional marker coordinates were obtained using biplane videofluoroscopic imaging during three consecutive cardiac cycles. A FE model of the AML was developed using marker coordinates at the end of isovolumic relaxation (when pressure difference across the valve is approximately zero), as the reference state. AML displacements were simulated during IVR using measured left ventricular and atrial pressures. AML elastic moduli in the radial and circumferential directions were obtained for each heartbeat by inverse FEA, minimizing the difference between simulated and measured displacements. Stress–strain curves for each beat were obtained from the FE model at incrementally increasing transmitral pressure intervals during IVR. Linear regression of 24 individual stress–strain curves (8 hearts, 3 beats each) yielded a mean (±SD) linear correlation coefficient (r2) of 0.994±0.003 for the circumferential direction and 0.995±0.003 for the radial direction. Thus, unlike isolated leaflets, the AML, in vivo, operates linearly over a physiologic range of pressures in the closed mitral valve.  相似文献   

13.
Osteochondral tissue engineering aims to regenerate functional tissue-mimicking physiological properties of injured cartilage and its subchondral bone. Given the distinct structural and biochemical difference between bone and cartilage, bilayered scaffolds, and bioreactors are commonly employed. We present an osteochondral culture system which cocultured ATDC5 and MC3T3-E1 cells on an additive manufactured bilayered scaffold in a dual-chamber perfusion bioreactor. Also, finite element models (FEM) based on the microcomputed tomography image of the manufactured scaffold as well as on the computer-aided design (CAD) were constructed; the microenvironment inside the two FEM was studied and compared. In vitro results showed that the coculture system supported osteochondral tissue growth in terms of cell viability, proliferation, distribution, and attachment. In silico results showed that the CAD and the actual manufactured scaffold had significant differences in the flow velocity, differentiation media mixing in the bioreactor and fluid-induced shear stress experienced by the cells. This system was shown to have the desired microenvironment for osteochondral tissue engineering and it can potentially be used as an inexpensive tool for testing newly developed pharmaceutical products for osteochondral defects.  相似文献   

14.
The Ross operation is a complex procedure for aortic valve replacement in which the pulmonary autograft is replaced by a homograft. However, homograft availability is becoming limited. This report evaluates the performance of porcine stentless prostheses as alternative pulmonary substitutes. Echocardiographic results from two patient cohorts were compared at time of discharge and 1 year after a Ross procedure. Thirty-three patients (median age 42 years, range 17–62 years, 76% male) received a stentless prosthesis (median size 25.6 mm, range 25–29 mm) for right ventricular outflow tract reconstruction. Clinical data were not significantly different from 106 patients (median age 47 years, range 2–68 years, 75% male) who received cryopreserved homografts (median size 26 mm, range 20–33 mm). At time of discharge, peak pressure gradients (ΔPmax) across the stentless valve (median ΔPmax 13 mmHg, range 2–26 mmHg) were higher compared to homografts (median ΔPmax 7 mmHg, range 1–32 mmHg, p<0.001). At 1 year, gradients increased in both groups, but were significantly higher across stentless valves (median ΔPmax 23 mmHg, range 10–81 mmHg vs. median ΔPmax 13 mmHg, range 2–74 mmHg, p<0.001). Eleven patients (33%) in the stentless-valve group were classified “at risk” with a ΔPmax of ≥30 mmHg. Four of them (12%) had to be re-operated. In conclusion, stentless valves showed higher pressure gradients and their performance was inferior to cryopreserved homografts. See accompanying commentary by Ulrich Stock DOI: 10.1002/biot.201200341  相似文献   

15.
16.
Epicardial adipose tissue (EAT) is a metabolically active visceral fat depot closely linked to the pathogenesis of heart failure (HF). But the molecular signatures related to the mechanism of HF have not been systematically explored. Here, we present comprehensive proteomic analysis of EAT in HF patients and non‐HF patients as controls. A total of 771 proteins were identified in liquid chromatography‐tandem mass spectrometry experiments. Amongst them, 17 increased in abundance in HF and seven decreased. They were involved in HF‐related processes including inflammation and oxidative stress response and lipid metabolism. Of these proteins, serine proteinase inhibitor A3 (Serpina3) levels in EAT were highly up‐regulated in HF, with HF/non‐HF ratio of 4.63 (P = .0047). Gene expression of Serpina3 via quantitative polymerase chain reaction was significantly increased in the HF group. ELISA analysis confirmed a significant increase in circulating plasma Serpina3 levels in the HF group (P = .004). In summary, for the first time, we describe that parts of EAT proteome may be reactive and work as modulators of HF. Our profiling provides a comprehensive basis for linking EAT with pathogenesis of HF. Understanding the role of EAT may offer new insights into the treatment of HF.  相似文献   

17.
In some cases of aortic valve leaflet disease, the implant of a stentless biological prosthesis represents an excellent option for aortic valve replacement (AVR). In particular, if compared with the implant of mechanical valves, it provides a more physiological haemodynamic performance and a reduced thrombogeneticity, avoiding the use of anticoagulants. The clinical outcomes of AVR are strongly dependent on an appropriate choice of both prosthesis size and replacement technique, which is, at present, strictly related to surgeon's experience and skill. This represents the motivation for patient-specific finite element analysis able to virtually reproduce stentless valve implantation. With the aim of performing reliable patient-specific simulations, we remark that, on the one hand, it is not well established in the literature whether bioprosthetic leaflet tissue is isotropic or anisotropic; on the other hand, it is of fundamental importance to incorporate an accurate material model to realistically predict post-operative performance. Within this framework, using a novel computational methodology to simulate stentless valve implantation, we test the impact of using different material models on both the stress pattern and post-operative coaptation parameters (i.e. coaptation area, length and height). As expected, the simulation results suggest that the material properties of the valve leaflets affect significantly the post-operative prosthesis performance.  相似文献   

18.
19.
This review provides a guide to researchers who wish to establish a biobank. It also gives practical advice to investigators seeking access to samples of healthy or diseased human hearts. We begin with a brief history of the Sydney Heart Bank (SHB) from when it began in 1989, including the pivotal role played by the late Victor Chang. We discuss our standard operating procedures for tissue collection which include cryopreservation and the quality assurance needed to maintain the long-term molecular and cellular integrity of the samples. The SHB now contains about 16,000 heart samples derived from over 450 patients who underwent isotopic heart transplant procedures and from over 100 healthy organ donors. These enable us to provide samples from a wide range of categories of heart failure. So far, we have delivered heart samples to more than 50 laboratories over two decades, and we answer their most frequently asked questions. Other SHB services include the development of tissue microarrays (TMA). These enable end users to perform preliminary examinations of the expression and localisation of target molecules in diseased or aging donor hearts, all in a single section of the TMA. Finally, the processes involved in managing tissue requests from external users and logistics considerations for the shipment of human tissue are discussed in detail.

Electronic supplementary material

The online version of this article (doi:10.1007/s12551-015-0182-6) contains supplementary material, which is available to authorized users.  相似文献   

20.
《Journal of biomechanics》2014,47(14):3517-3523
Previous efforts in heart valve tissue engineering demonstrated that the combined effect of cyclic flexure and steady flow on bone marrow derived stem cell-seeded scaffolds resulted in significant increases in engineered collagen formation [Engelmayr et al. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials 2006; 27(36): 6083–95]. Here, we provide a new interpretation for the underlying reason for this observed effect. In addition, another related investigation demonstrated the impact of fluid flow on DNA content and quantified the fluid-induced shear stresses on the engineered heart valve tissue specimens [Engelmayr et al. A Novel Flex-Stretch-Flow Bioreactor for the Study of Engineered Heart Valve Tissue Mechanobiology]. Annals of Biomedical Engineering 2008, 36, 1–13]. In this study, we performed more advanced CFD analysis with an emphasis on oscillatory wall shear stresses imparted on specimens when mechanically conditioned by a combination of cyclic flexure and steady flow. Specifically, we hypothesized that the dominant stimulatory regulator of the bone marrow stem cells is fluid-induced and depends on both the magnitude and temporal directionality of surface stresses, i.e., oscillatory shear stresses (OSS) acting on the developing tissues. Therefore, we computationally quantified the (i) magnitude of fluid-induced shear stresses as well as (ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter. Noting that sample cyclic flexure induces a high degree of OSS, we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: (1) No Flow, No Flexure (control group), (2) Steady Flow-alone, (3) Cyclic Flexure-alone and (4) Combined Steady flow and Cyclic Flexure environments. Indeed we found that the coexistence of both OSS and appreciable shear stress magnitudes explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号