首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
The activation/deactivation processes for G-protein coupled receptors (GPCRs) have been computationally studied for several different classes, including rhodopsin, the β2 adrenergic receptor, and the M2 muscarinic receptor. Despite determined cocrystal structures of the adenosine A2A receptor (A2AAR) in complex with antagonists, agonists and an antibody, the deactivation process of this GPCR is not completely understood. In this study, we investigate the convergence of two apo simulations, one starting with an agonist-bound conformation (PDB: 3QAK)14 and the other starting with an antagonist-bound conformation (PDB: 3EML)11. Despite the two simulations not completely converging, we were able to identify distinct intermediate steps of the deactivation process characterized by the movement of Y2887.53 in the NPxxY motif. We find that Y2887.53 contributes to the process by forming hydrogen bonds to residues in transmembrane helices 2 and 7 and losing these interactions upon full deactivation. Y1975.58 also plays a role in the process by forming a hydrogen bond only once the side chain moves from the lipid interface to the middle of the helical bundle.  相似文献   

2.
Abstract

Adenosine receptors (ARs) belong to family A of GPCRs that are involved in many diseases, including cerebral and cardiac ischemic diseases, immune and inflammatory disorders, etc. Thus, they represent important therapeutic targets to treat these conditions. Computational techniques such as molecular dynamics (MD) simulations permit researchers to obtain structural information about these proteins, and principal component analysis (PCA) allows for the identification of collective motions. There are available structures for the active form (3QAK) and the inactive form (3EML) of A2AR which permit us to gain insight about their activation/inactivation mechanism. In this work, we have proposed an inverse strategy using MD simulations where the active form was coupled to the antagonist caffeine and the inactive form was coupled to adenosine agonist. Moreover, we have included four reported thermostabilizing mutations in the inactive form to study A2AR structural differences under different conditions. Some observations stand out from the PCA studies. For instance, the apo structures showed remarkable similarities, and the principal components (PCs) were rearranged in a ligand-dependent manner. Additionally, the active conformation was less stable compared to the inactive one. Some PCs inverted their direction in the presence of a ligand, and comparison of the PCs between 3EML and 3EML_ADN showed that adenosine induced major changes in the structure of A2AR. Rearrangement of PCs precedes and drives conformational changes that occur after ligand binding. Knowledge about these conformational changes provides important insights about the activity of A2AR.  相似文献   

3.

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30–200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.

  相似文献   

4.
Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical signals to the cell, via conformational change from a resting (inactive) to an active (canonically bound to a G-protein) conformation. Receptor activation is normally modulated by extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by stabilizing different conformational states. In this work, we built structure-energetic relationships of receptor activation based on original thermodynamic cycles that represent the conformational equilibrium of the prototypical A2A adenosine receptor (AR). These cycles were solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the pharmacological profile of different series of A2AAR agonists with different efficacies. The modulatory effects of point mutations on the basal activity of the receptor or on ligand efficacies could also be detected. This methodology can guide GPCR ligand design with tailored pharmacological properties, or allow the identification of mutations that modulate receptor activation with potential clinical implications.  相似文献   

5.
Mast cell degranulation triggers hypersensitivity reactions at the body–environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA''s enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA''s enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.  相似文献   

6.
Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.  相似文献   

7.
Adenosine pathway, including its generating enzyme (CD73) and its receptors represents a key target for cancer immunotherapy. Here we aimed to search for novel compounds able to co-target the CD73 and the A2A adenosine receptor (A2A AR) as dual-blockers of adenosine generation and activity. The design project was to combine in the same molecule the thiazolo[5,4-d]pyrimidine core, an essential pharmacophoric feature to block the A2A AR, with a benzenesulfonamide group which is a characteristic group of CD73 inhibitors. Most of the reported compounds resulted in inverse agonists of the human (h) A2A AR endowed with high affinity, selectivity and potency. However they were weak inhibitors of CD73 enzyme. Nevertheless, this study can be considered as a starting point to develop more active compounds.  相似文献   

8.
Angiogenesis is critical to wound repair due to its role in providing oxygen and nutrients that are required to support the growth and function of reparative cells in damaged tissues. Adenosine receptors are claimed to be of paramount importance in driving wound angiogenesis by inducing VEGF. However, the underlying mechanisms for the regulation of adenosine receptors in VEGF as well as eNOS remain poorly understood. In the present study, we found that adenosine and the non-selective adenosine receptor agonists (NECA) induced tube formation in HMEC-1 in a dose-dependent manner. Adenosine or NECA (10 µmol/L) significantly augmented the number and length of the segments in comparison with the control. Simultaneously, VEGF and eNOS were significantly upregulated following the administration of 10 µmol/L NECA, while they were suppressed after A2B AR genetic silencing and pharmacological inhibition by MRS1754. In addition, VEGF expression and eNOS bioavailability elimination significantly reduced the formation of capillary-like structures. Furthermore, the activation of A2B AR by NECA significantly increased the intracellular cAMP levels and concomitant CREB phosphorylation, eventually leading to the production of VEGF in HMEC-1. However, the activated PKA-CREB pathway seemed to be invalidated in the induction of eNOS. Moreover, we found that the elicited PI3K/AKT signaling in response to the induction of NECA assisted in regulating eNOS but failed to impact on VEGF generation. In conclusion, the A2B AR activation-driven angiogenesis via cAMP-PKA-CREB mediated VEGF production and PI3K/AKT-dependent upregulation of eNOS in HMEC-1.  相似文献   

9.
Adenosine is an important regulatory metabolite and an inhibitor of platelet activation. Adenosine released from different cells or generated through the activity of cell-surface ectoenzymes exerts its effects through the binding of four different G-protein-coupled adenosine receptors. In platelets, binding of A2 subtypes (A2A or A2B) leads to consequent elevation of intracellular cyclic adenosine monophosphate, an inhibitor of platelet activation. The significance of this ligand and its receptors for platelet activation is addressed in this review, including how adenosine metabolism and its A2 subtype receptors impact the expression and activity of adenosine diphosphate receptors. The expression of A2 adenosine receptors is induced by conditions such as oxidative stress, a hallmark of aging. The effect of adenosine receptors on platelet activation during aging is also discussed, as well as potential therapeutic applications.  相似文献   

10.
1.Chronic ingestion of caffeine causes a significant increase in levels of A1-adenosine, nicotinic and muscarinic receptors, serotonergic receptors, GABAA receptors and L-type calcium channels in cerebral cortical membranes from mice NIH Swiss strain mice.2.Chronic theophylline and paraxanthine had effects similar to those of caffeine except that levels of L-type channels were unchanged. Chronic theobromine, a weak adenosine antagonist, and 1-isobutyl-3-methylxanthine (IBMX), a potent adenosine antagonist and phosphodiesterase inhibitor, caused only an increase in levels of A1-adenosine receptors. A combination of chronic caffeine and IBMX had the same effects on receptors as caffeine alone. Chronic 3,7-dimethyl-1-propargylxanthine (DMPX), a somewhat selective A2A-antagonist, caused only an increase in levels of A1-adenosine receptors. Pentoxyfylline, an adenosine-uptake inhibitor inactive at adenosine receptors, had no effect on receptor levels or calcium channels.3.A comparison of plasma and brain levels of xanthines indicated that caffeine penetrated more readily and attained somewhat higher brain levels than theophylline or theobromine. Penetration and levels were even lower for IBMX, paraxanthine, DMPX, and pentoxyfylline.4.The results suggest that effective blockade of both A1 and A2A-adenosine receptors is necessary for the full spectrum of biochemical changes elicited by chronic ingestion of xanthines, such as caffeine, theophylline, and paraxanthine.  相似文献   

11.

Background

Glaucoma, a leading cause of blindness worldwide, is an optic neuropathy commonly associated with elevated intraocular pressure (IOP). The major goals of glaucoma treatments are to lower IOP and protect retinal ganglion cells. It has been revealed recently that adenosine and adenosine receptors (ARs) have important roles in IOP modulation and neuroprotection.

Scope of review

This article reviews recent studies on the important roles of adenosine and ARs in aqueous humor formation and outflow facility, IOP and retinal neuroprotection.

Major conclusions

Adenosine and several adenosine derivatives increase and/or decrease IOP via A2A AR. Activation of A1 AR can reduce outflow resistance and thereby lower IOP, A3 receptor antagonists prevent adenosine-induced activation of Cl channels of the ciliary non-pigmented epithelial cells and thereby lower IOP. A1 and A2A agonists can reduce vascular resistance and increase retina and optic nerve head blood flow. A1 agonist and A2A antagonist can enhance the recovery of retinal function after ischemia attack. Adenosine acting at A3 receptors can attenuate the rise in calcium and retinal ganglion cells death accompanying P2X(7) receptor activation.

General significance

Evidence suggested that the adenosine system is one of the potential target systems for therapeutic approaches in glaucoma.  相似文献   

12.
J W Daly  R F Bruns  S H Snyder 《Life sciences》1981,28(19):2083-2097
Adenosine has a significant role in many functions of the central nervous system. Behaviorally, adenosine and adenosine analogs have marked depressant effects. Electrophysiologically, adenosine reduces spontaneous neuronal activity and inhibits transsynaptic potentials via interaction with extracellular receptors. Biochemically, adenosine inhibits adenylate cyclase via a “high” affinity receptor, and activates adenylate cyclase via a “low” affinity receptor. These receptors, called “A1” and “A2” respectively, show differing profiles for activation by adenosine analogs. Radioactive N6-cyclohexyladenosine binds selectively to the “high” affinity receptor. One major class of antagonists is known at adenosine receptors: the alkylxanthines, including caffeine and theophylline. Radioactive 1,3-diethyl-8-phenylxanthine, a particularly potent antagonist, appears to bind to both low and high affinity adenosine receptors. Behavioral, electrophysiological, and biochemical effects of alkylxanthines are consistent with the hypothesis that the central stimulatory actions of caffeine and theophylline are due in large part to antagonism of central adenosine receptors.  相似文献   

13.
The adenosine A2A receptor (A2AR) is a G-protein-coupled receptor that plays a key role in transmembrane signalling mediated by the agonist adenosine. The structure of A2AR was determined recently in an antagonist-bound conformation, which was facilitated by the T4 lysozyme fusion in cytoplasmic loop 3 and the considerable stabilisation conferred on the receptor by the bound inverse agonist ZM241385. Unfortunately, the natural agonist adenosine does not sufficiently stabilise the receptor for the formation of diffraction-quality crystals. As a first step towards determining the structure of A2AR bound to an agonist, the receptor was thermostabilised by systematic mutagenesis in the presence of the bound agonist [3H]5'-N-ethylcarboxamidoadenosine (NECA). Four thermostabilising mutations were identified that when combined to give mutant A2AR-GL26, conferred a greater than 200-fold decrease in its rate of unfolding compared to the wild-type receptor. Pharmacological analysis suggested that A2AR-GL26 is stabilised in an agonist-bound conformation because antagonists bind with up to 320-fold decreased affinity. None of the thermostabilising mutations are in the ZM241385 binding pocket, suggesting that the mutations affect ligand binding by altering the conformation of the receptor rather than through direct interactions with ligands. A2AR-GL26 shows considerable stability in short-chain detergents, which has allowed its purification and crystallisation.  相似文献   

14.
腺苷和睡眠觉醒调节   总被引:2,自引:0,他引:2  
腺苷作为神经调质,调节多种神经生物学功能.随觉醒时间延长,动物脑内腺苷水平逐渐增高,在睡眠期显著降低.因此,腺苷被认为是调节睡眠的内稳态因子之一.腺苷受体(receptor,R)有A1R、A2AR、A2BR和A3R四种亚型,其中A1R和A2AR与诱导睡眠相关.激活A1R可抑制促觉醒神经元诱导睡眠,也可抑制促眠神经元导致...  相似文献   

15.
The early stages of diabetic retinopathy (DR) are characterized by alterations similar to neurodegenerative and inflammatory conditions such as increased neural apoptosis, microglial cell activation and amplified production of pro-inflammatory cytokines. Adenosine regulates several physiological functions by stimulating four subtypes of receptors, A1AR, A2AAR, A2BAR, and A3AR. Although the adenosinergic signaling system is affected by diabetes in several tissues, it is unknown whether diabetic conditions in the retina can also affect it. Adenosine delivers potent suppressive effects on virtually all cells of the immune system, but its potential role in the context of DR has yet to be studied in full. In this study, we used primary mixed cultures of rat retinal cells exposed to high glucose conditions, to mimic hyperglycemia, and a streptozotocin rat model of type 1 diabetes to determine the effect diabetes/hyperglycemia have on the expression and protein levels of adenosine receptors and of the enzymes adenosine deaminase and adenosine kinase. We found elevated mRNA and protein levels of A1AR and A2AAR, in retinal cell cultures under high glucose conditions and a transient increase in the levels of the same receptors in diabetic retinas. Adenosine deaminase and adenosine kinase expression and protein levels showed a significant decrease in diabetic retinas 30 days after diabetes induction. An enzymatic assay performed in retinal cell cultures revealed a marked decrease in the activity of adenosine deaminase under high glucose conditions. We also found an increase in extracellular adenosine levels accompanied by a decrease in intracellular levels when retinal cells were subjected to high glucose conditions. In conclusion, this study shows that several components of the retinal adenosinergic system are affected by diabetes and high glucose conditions, and the modulation observed may uncover a possible mechanism for the alleviation of the inflammatory and excitotoxic conditions observed in diabetic retinas.  相似文献   

16.
Cholesterol has been shown to modulate the activity of multiple G Protein-coupled receptors (GPCRs), yet whether cholesterol acts through specific interactions, indirectly via modifications to the membrane, or via both mechanisms is not well understood. High-resolution crystal structures of GPCRs have identified bound cholesterols; based on a β2-adrenergic receptor (β2AR) structure bound to cholesterol and the presence of conserved amino acids in class A receptors, the cholesterol consensus motif (CCM) was identified. Here in mammalian cells expressing the adenosine A2A receptor (A2AR), ligand dependent production of cAMP is reduced following membrane cholesterol depletion with methyl-beta-cyclodextrin (MβCD), indicating that A2AR signaling is dependent on cholesterol. In contrast, ligand binding is not dependent on cholesterol depletion. All-atom molecular simulations suggest that cholesterol interacts specifically with the CCM when the receptor is in an active state, but not when in an inactive state. Taken together, the data support a model of receptor state-dependent binding between cholesterol and the CCM, which could facilitate both G-protein coupling and downstream signaling of A2AR.  相似文献   

17.
Recent experiments to derive a thermally stable mutant of turkey beta-1-adrenergic receptor (β1AR) have shown that a combination of six single point mutations resulted in a 20°C increase in thermal stability in mutant β1AR. Here we have used the all-atom force-field energy function to calculate a stability score to detect stabilizing point mutations in G-protein coupled receptors. The calculated stability score shows good correlation with the measured thermal stability for 76 single point mutations and 22 multiple mutants in β1AR. We have demonstrated that conformational sampling of the receptor for various mutants improve the prediction of thermal stability by 50%. Point mutations Y227A5.58, V230A5.61, and F338M7.48 in the thermally stable mutant m23-β1AR stabilizes key microdomains of the receptor in the inactive conformation. The Y227A5.58 and V230A5.61 mutations stabilize the ionic lock between R1393.50 on transmembrane helix3 and E2856.30 on transmembrane helix6. The mutation F338M7.48 on TM7 alters the interaction of the conserved motif NPxxY(x)5,6F with helix8 and hence modulates the interaction of TM2-TM7-helix8 microdomain. The D186-R317 salt bridge (in extracellular loops 2 and 3) is stabilized in the cyanopindolol-bound wild-type β1AR, whereas the salt bridge between D184-R317 is preferred in the mutant m23. We propose that this could be the surrogate to a similar salt bridge found between the extracellular loop 2 and TM7 in β2AR reported recently. We show that the binding energy difference between the inactive and active states is less in m23 compared to the wild-type, which explains the activation of m23 at higher norepinephrine concentration compared to the wild-type. Results from this work throw light into the mechanism behind stabilizing mutations. The computational scheme proposed in this work could be used to design stabilizing mutations for other G-protein coupled receptors.  相似文献   

18.
The structural and functional interaction between D2 dopamine receptor (DR) and A2A adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D2DR induces a significant negative regulation of A2AAR-mediated responses, whereas few data are at now available about the regulation of A2AAR by D2DR agonists at receptor recognition site. In this work we confirmed that in A2AAR/D2DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D2DR agonists were able to negatively modulate both A2AAR affinity and functionality. These effects occurred even if any significant changes in A2AAR/D2DR energy transfer interaction could be detected in BRET experiments.Since the development of new molecules able to target A2A/D2 dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D2DR and modulator of A2A-D2 receptor dimer. This compound was able to negatively modulate A2AAR binding properties and functional responsiveness in a manner comparable to classical D2R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D2DR homomers and heteromers and induced A2AAR/D2DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A2AAR/D2 DR heteromers.  相似文献   

19.
G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences. Co-immunoprecipitation and co-localization studies with differentially epitope-tagged A1, β1, and β2 receptors transiently co-expressed in HEK-293 cells indicate that A1AR forms constitutive heterodimers with both β1R and β2R. This heterodimerization significantly influenced orthosteric ligand binding affinity of both β1R and β2R without altering ligand binding properties of A1AR. Receptor-mediated ERK1/2 phosphorylation significantly increased in cells expressing A1AR/β1R and A1AR/β2R heteromers. β-Receptor-mediated cAMP production was not altered in A1AR/β1R expressing cells, but was significantly reduced in the A1AR/β2R cells. The inhibitory effect of the A1AR on cAMP production was abrogated in both A1AR/β1R and A1AR/β2R expressing cells in response to the A1AR agonist CCPA. Co-immunoprecipitation studies conducted with human heart tissue lysates indicate that endogenous A1AR, β1R, and β2R also form heterodimers. Taken together, our data suggest that heterodimerization between A1 and β receptors leads to altered receptor pharmacology, functional coupling, and intracellular signaling pathways. Unique and differential receptor cross-talk between these two important receptor families may offer the opportunity to fine-tune crucial signaling responses and development of more specific therapeutic interventions.  相似文献   

20.
A selective agonist radioligand for A2B adenosine receptors (A2BARs) is currently not available. Such a tool would be useful for labeling the active conformation of the receptors. Therefore, we prepared BAY 60-6583, a potent and functionally selective A2BAR (partial) agonist, in a tritium-labeled form. Despite extensive efforts, however, we have not been able to establish a radioligand binding assay using [3H]BAY 60-6583. This is probably due to its high non-specific binding and its moderate affinity, which had previously been overestimated based on functional data. As an alternative, we evaluated the non-selective A2BAR agonist [3H]NECA for its potential to label A2BARs. [3H]NECA showed specific, saturable, and reversible binding to membrane preparations of Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells stably expressing human, rat, or mouse A2BARs. In competition binding experiments, the AR agonists 2-chloroadenosine (CADO) and NECA displayed significantly higher affinity when tested versus [3H]NECA than versus the A2B-antagonist radioligand [3H]PSB-603 while structurally diverse AR antagonists showed the opposite effects. Although BAY 60-6583 is an A2BAR agonist, it displayed higher affinity versus [3H]PSB-603 than versus [3H]NECA. These results indicate that nucleoside and non-nucleoside agonists are binding to very different conformations of the A2BAR. In conclusion, [3H]NECA is currently the only useful radioligand for determining the affinity of ligands for an active A2BAR conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号