首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical factors such as stresses and strains play a major role in the growth and remodelling of soft biological tissues. The main constituents of tissue undergo different processes reacting to mechanical stimulus. Thereby, the characterisation of growth and remodelling requires an accurate estimation of the stresses and strains of their main components. Many soft tissues can be considered as composite materials and can be analysed using an appropriate rule of mixtures. Particularly, arterial tissue can be modelled as an isotropic soft matrix reinforced with preferentially oriented collagen fibres. An inverse approach to obtain the mechanical characterisation of each main component is proposed in this work. The procedure is based on a rule of mixtures raised in a finite deformation framework and generalised to include kinematics and compatibility equations for serial–parallel behaviour. This methodology allows obtaining the stress–strain relationship of the components fitting experimental data.  相似文献   

2.
This paper presents a novel inverse estimation approach for the active contraction stresses of tongue muscles during speech. The proposed method is based on variational data assimilation using a mechanical tongue model and 3D tongue surface shapes for speech production. The mechanical tongue model considers nonlinear hyperelasticity, finite deformation, actual geometry from computed tomography (CT) images, and anisotropic active contraction by muscle fibers, the orientations of which are ideally determined using anatomical drawings. The tongue deformation is obtained by solving a stationary force-equilibrium equation using a finite element method. An inverse problem is established to find the combination of muscle contraction stresses that minimizes the Euclidean distance of the tongue surfaces between the mechanical analysis and CT results of speech production, where a signed-distance function represents the tongue surface. Our approach is validated through an ideal numerical example and extended to the real-world case of two Japanese vowels, /ʉ/ and /ɯ/. The results capture the target shape completely and provide an excellent estimation of the active contraction stresses in the ideal case, and exhibit similar tendencies as in previous observations and simulations for the actual vowel cases. The present approach can reveal the relative relationship among the muscle contraction stresses in similar utterances with different tongue shapes, and enables the investigation of the coordination of tongue muscles during speech using only the deformed tongue shape obtained from medical images. This will enhance our understanding of speech motor control.  相似文献   

3.
Finite element modelling of contracting skeletal muscle   总被引:2,自引:0,他引:2  
To describe the mechanical behaviour of biological tissues and transport processes in biological tissues, conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically these are cast into the form of partial differential equations. Because of nonlinear material behaviour, inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical solutions for these sets of equations. The objective of the finite element method is to find approximate solutions for these problems. The concepts of the finite element method are explained on a finite element continuum model of skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear passive part and an active part. The latter is described with a two-state Huxley model. This means that an extra nonlinear partial differential equation has to be solved. The problems and solutions involved with this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior of a rat. The results have been compared with experimentally determined strains at the surface of the muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured strains were higher.  相似文献   

4.
《Biophysical journal》2022,121(4):525-539
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure.Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.  相似文献   

5.
Dynamic finite element modeling of poroviscoelastic soft tissue   总被引:1,自引:0,他引:1  
Clinical evidences relative to biomechanical factors have demonstrated their important contribution to the behaviour of soft tissues. Finite element (FE) analysis is used to study the mechanical behaviour of soft tissue because it can provide numerical solutions to problems that are intractable to analytic solutions. This study focuses on the development of a FE model of a poroelastic biological tissue, which incorporates the viscoelastic material behaviour, finite deformation and inertial effect. The FE formulation is based on the weak form derived from the governing equation, and Newmark-beta method as well as Newton's method is incorporated into the implicit non-linear solutions. One-dimensional analytical solutions were used to verify the theoretical formulation and the numerical implementation of the proposed model. This study was further extended to analyze two-dimensional biomechanical models and the results clearly demonstrate the importance of including finite deformation, viscoelasticity and inertial effects.  相似文献   

6.
The noninvasive measurement of finite strains in biomaterials and tissues by magnetic resonance imaging (MRI) enables mathematical estimates of stress distributions and material properties. Such methods allow for non-contact and patient-specific modeling in a manner not possible with traditional mechanical testing or finite element techniques. Here, we employed three constitutive (i.e. linear Hookean, and nonlinear Neo-Hookean and Mooney-Rivlin) relations with known loading conditions and MRI-based finite strains to estimate stress patterns and material properties in the articular cartilage of tibiofemoral joints. Displacement-encoded MRI was used to determine two-dimensional finite strains in juvenile porcine joints, and an iterative technique estimated stress distributions and material properties with defined constitutive relations. Stress distributions were consistent across all relations, although the stress magnitudes varied. Material properties for femoral and tibial cartilage were found to be consistent with those reported in literature. Further, the stress estimates from Hookean and Neo-Hookean, but not Mooney-Rivlin, relations agreed with finite element-based simulations. A nonlinear Neo-Hookean relation provided the most appropriate model for the characterization of complex and spatially dependent stresses using two-dimensional MRI-based finite strain. These results demonstrate the feasibility of a new and computationally efficient technique incorporating MRI-based deformation with mathematical modeling to non-invasively evaluate the mechanical behavior of biological tissues and materials.  相似文献   

7.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2–L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

8.
9.
10.
In this work, a finite element model intends to represent the effects that the passage of a fetal head can induce on the muscles of the pelvic floor, from a mechanical point of view.The finite element method is a valuable tool, that is contributing to the clarification of the mechanisms behind pelvic floor disorders related to vaginal deliveries, although some care is necessary in order to obtain correct results. The present work shows how the variation of the material parameters, used in the constitutive model, can affect the obtained results from a finite element simulation. The constitutive equation adopted in this work for the pelvic floor muscles is a modified form of the incompressible transversely isotropic hyperelastic model proposed earlier by Humphrey and Yin.Results for the pelvic floor strain and stresses obtained during the passage of the fetus head are presented. The results show the importance of the material parameters and the need for a correct constitutive model.  相似文献   

11.
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.  相似文献   

12.
Coronary artery disease is responsible for almost 30% of all deaths worldwide. The saphenous vein and umbilical vein (UV) are the most common veins using for treatment as a coronary artery bypass graft (CABG). The mechanical properties of UV belonging to its long-term patency for CABG are very important. However, there is a lack of knowledge on the linear elastic and nonlinear hyperelastic mechanical properties of the UV. In this study, three stress definitions (second Piola–Kichhoff stress, engineering stress and true stress) and four strain definitions (Almansi–Hamel strain, Green–St Venant strain, engineering strain and true strain) are used to determine the elastic modulus, maximum stress and strain of eight human UVs under circumferential loading. The nonlinear mechanical behaviour of the UV is computationally investigated using Mooney–Rivlin hyperelastic model. A numerical finite element analysis is also carried out to simulate the constitutive modelling versus its numerical results. The results show that the Almansi–Hamel strain definition overestimates the elastic modulus while Green–St Venant strain definition underestimates the elastic modulus at different stress definitions. The true stress–true strain definition, which gives more accurate measurements of the tissue's response using the instantaneous values, reveals the Young's modulus and maximum stress of 2.18 and 6.01 MPa, respectively. The Mooney–Rivlin material model is well represented by the nonlinear mechanical behaviour of the UV. The findings of this study could have implications not only for understanding the extension and rupture mechanism of UV but also for interventions and surgeries, including balloon angioplasty, bypass and stenting.  相似文献   

13.
A comprehensive experimental/numerical procedure is formulated and validated for the in vivo characterization of the mechanical properties of human skin and the simulation of reconstructive surgery. The procedure uses in vivo experimental tests on undermined skin flaps, which can be performed during surgery, a numerical model formulated within the framework of nonlinear finite strain elasticity and a nonlinear parameter identification technique for the calibration of the model from indirect measurements. The procedure is applied to characterize the scalp skin tested in Raposio and Nordstr?m (Skin Res. Technol. 4 (1998) 94). The skin is treated as a time independent, isotropic and hyperelastic membrane and the problem is solved through a finite element discretization. The study highlights that the model parameters can be determined with good accuracy using displacement measurements of a few points in the domain.  相似文献   

14.
In this study, a three-dimensional finite element model of the human anterior cruciate ligament (ACL) was developed and simulations of passive knee flexion were performed. The geometrical model of the ACL was built from experimental measurements performed on a cadaveric knee specimen which was also subjected to kinematics tests. These experiments were used to enforce the particular boundary conditions used in the numerical model. A previously developed transversely isotropic hyperelastic material model was implemented and the ability to pre-stress the ligament was also included. The model exhibited the key characteristics of connective soft tissues: anisotropy, nonlinear behaviour, large strains, very high compliance for compressive or bending loading along the collagen fibres and incompressibility. Simulations of passive knee flexion were performed, with and without pre-stressing the ACL. The resultant force generated by the ACL was monitored and the results compared to existing experimental data. The stress distribution within the ligament was also assessed. When the ACL was pre-stressed, there was a good correlation between the predicted and experimental resultant forces reported in the literature over the entire flexion-extension range. The stress distribution in the pre-stressed and stress-free ACL were similar, although the magnitudes in the pre-stressed ACL were higher, particularly at low flexion angles.  相似文献   

15.
In attempts to elucidate the underlying mechanisms of spinal injuries and spinal deformities, several experimental and numerical studies have been conducted to understand the biomechanical behavior of the spine. However, numerical biomechanical studies suffer from uncertainties associated with hard- and soft-tissue anatomies. Currently, these parameters are identified manually on each mesh model prior to simulations. The determination of soft connective tissues on finite element meshes can be a tedious procedure, which limits the number of models used in the numerical studies to a few instances. In order to address these limitations, an image-based method for automatic morphing of soft connective tissues has been proposed. Results showed that the proposed method is capable to accurately determine the spatial locations of predetermined bony landmarks. The present method can be used to automatically generate patient-specific models, which may be helpful in designing studies involving a large number of instances and to understand the mechanical behavior of biomechanical structures across a given population.  相似文献   

16.
This work deals with the development and implementation of a new fatigue model for simulating fatigue effects in skeletal muscles. Basic idea of this modelling strategy is an approach that divides the fibres of a muscle into three groups: fibres in the active state, those that are already fatigued and fibres in the resting state. All fibres are able to switch between the different groups by defining adequate rates. In this way a continuous transfer of fibres between those three states has been described. Rooted on an incompressible, hyperelastic constitutive law with transversely isotropic characteristics the fatigue model has been implemented in the framework of the finite element method. Numerical examples are given in order to illustrate the ability of this model. Further, we validate the model by fatigue experiments of the rat soleus muscle. In doing so, it proves that the model is able to predict physiological observations and mechanical test results.  相似文献   

17.
Pressure sores affecting muscles are severe injuries associated with ischemia, impaired metabolic activity, excessive tissue deformation, and insufficient lymph drainage caused by prolonged and intensive mechanical loads. We hypothesize that mechanical properties of muscle tissue change as a result of exposure to prolonged and intensive loads. Such changes may affect the distribution of stresses in soft tissues under bony prominences and potentially expose additional uninjured regions of muscle tissue to intensified stresses. In this study, we characterized changes in tangent elastic moduli and strain energy densities of rat gracilis muscles exposed to pressure in vivo (11.5, 35, or 70 kPa for 2, 4, or 6 h) and incorporated the abnormal properties that were measured in finite element models of the head, shoulders, pelvis, and heels of a recumbent patient. Using in vitro uniaxial tension testing, we found that tangent elastic moduli of muscles exposed to 35 and 70 kPa were 1.6-fold those of controls (P < 0.05, for strains /=5%). Histological (phosphotungstic acid hematoxylin) evaluation showed that this stiffening accompanied extensive necrotic damage. Incorporating these effects into the finite element models, we were able to show that the increased muscle stiffness in widening regions results in elevated tissue stresses that exacerbate the potential for tissue necrosis. Interfacial pressures could not predict deep muscle (e.g., longissimus or gluteus) stresses and injuring conditions. We conclude that information on internal muscle stresses is required to establish new criteria for pressure sore prevention.  相似文献   

18.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

19.
The nonlinear static deformation of human descending thoracic aortic segments is investigated. The aorta segments are modeled as straight axisymmetric circular cylindrical shells with three hyperelastic anisotropic layers and residual stresses by using an advanced nonlinear shell theory with higher-order thickness deformation not available in commercial finite element codes. The residual stresses are evaluated in the closed configuration in an original way making use of the multiplicative decomposition. The model was initially validated through comparison with published numerical and experimental data for artery and aorta segments. Then, two different cases of healthy thoracic descending aorta segments were numerically simulated. Material data and residual stresses used in the models came from published layer-specific experiments for human aortas. The material model adopted in the study is the mechanically based Gasser–Ogden–Holzapfel, which takes into account collagen fiber dispersion. Numerical results present a difference between systolic and diastolic inner radii close to the data available in literature from in vivo measurements for the corresponding age groups. Constant length of the aortic segment between systolic and diastolic pressures was obtained for the material model that takes the dispersion of the fiber orientations into account.  相似文献   

20.
Stress and deformation in arterial wall tissue are factors which may influence significantly its response and evolution. In this work we develop models based on nonlinear elasticity and finite element numerical solutions for the mechanical behaviour and the remodelling of the soft tissue of arteries, including anisotropy induced by the presence of collagen fibres. Remodelling and growth in particular constitute important features in order to interpret stenosis and atherosclerosis. The main object of this work is to model accurately volumetric growth, induced by fluid shear stress in the intima and local wall stress in arteries with patient-specific geometry and loads. The model is implemented in a nonlinear finite element setting which may be applied to realistic 3D geometries obtained from in vivo measurements. The capabilities of this method are demonstrated in several examples. Firstly a stenotic process on an idealised geometry induced by a non-uniform shear stress distribution is considered. Following the growth of a right coronary artery from an in vivo reconstructed geometry is presented. Finally, experimental measurements for growth under hypertension for rat carotid arteries are modelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号