首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Brown ER  Ibrahim JG 《Biometrics》2003,59(3):686-693
Complex issues arise when investigating the association between longitudinal immunologic measures and time to an event, such as time to relapse, in cancer vaccine trials. Unlike many clinical trials, we may encounter patients who are cured and no longer susceptible to the time-to-event endpoint. If there are cured patients in the population, there is a plateau in the survival function, S(t), after sufficient follow-up. If we want to determine the association between the longitudinal measure and the time-to-event in the presence of cure, existing methods for jointly modeling longitudinal and survival data would be inappropriate, since they do not account for the plateau in the survival function. The nature of the longitudinal data in cancer vaccine trials is also unique, as many patients may not exhibit an immune response to vaccination at varying time points throughout the trial. We present a new joint model for longitudinal and survival data that accounts both for the possibility that a subject is cured and for the unique nature of the longitudinal data. An example is presented from a cancer vaccine clinical trial.  相似文献   

2.
Ye W  Lin X  Taylor JM 《Biometrics》2008,64(4):1238-1246
SUMMARY: In this article we investigate regression calibration methods to jointly model longitudinal and survival data using a semiparametric longitudinal model and a proportional hazards model. In the longitudinal model, a biomarker is assumed to follow a semiparametric mixed model where covariate effects are modeled parametrically and subject-specific time profiles are modeled nonparametrially using a population smoothing spline and subject-specific random stochastic processes. The Cox model is assumed for survival data by including both the current measure and the rate of change of the underlying longitudinal trajectories as covariates, as motivated by a prostate cancer study application. We develop a two-stage semiparametric regression calibration (RC) method. Two variations of the RC method are considered, risk set regression calibration and a computationally simpler ordinary regression calibration. Simulation results show that the two-stage RC approach performs well in practice and effectively corrects the bias from the naive method. We apply the proposed methods to the analysis of a dataset for evaluating the effects of the longitudinal biomarker PSA on the recurrence of prostate cancer.  相似文献   

3.
Summary We present a novel semiparametric survival model with a log‐linear median regression function. As a useful alternative to existing semiparametric models, our large model class has many important practical advantages, including interpretation of the regression parameters via the median and the ability to address heteroscedasticity. We demonstrate that our modeling technique facilitates the ease of prior elicitation and computation for both parametric and semiparametric Bayesian analysis of survival data. We illustrate the advantages of our modeling, as well as model diagnostics, via a reanalysis of a small‐cell lung cancer study. Results of our simulation study provide further support for our model in practice.  相似文献   

4.
In a typical case-control study, exposure information is collected at a single time point for the cases and controls. However, case-control studies are often embedded in existing cohort studies containing a wealth of longitudinal exposure history about the participants. Recent medical studies have indicated that incorporating past exposure history, or a constructed summary measure of cumulative exposure derived from the past exposure history, when available, may lead to more precise and clinically meaningful estimates of the disease risk. In this article, we propose a flexible Bayesian semiparametric approach to model the longitudinal exposure profiles of the cases and controls and then use measures of cumulative exposure based on a weighted integral of this trajectory in the final disease risk model. The estimation is done via a joint likelihood. In the construction of the cumulative exposure summary, we introduce an influence function, a smooth function of time to characterize the association pattern of the exposure profile on the disease status with different time windows potentially having differential influence/weights. This enables us to analyze how the present disease status of a subject is influenced by his/her past exposure history conditional on the current ones. The joint likelihood formulation allows us to properly account for uncertainties associated with both stages of the estimation process in an integrated manner. Analysis is carried out in a hierarchical Bayesian framework using reversible jump Markov chain Monte Carlo algorithms. The proposed methodology is motivated by, and applied to a case-control study of prostate cancer where longitudinal biomarker information is available for the cases and controls.  相似文献   

5.
Hogan JW  Lin X  Herman B 《Biometrics》2004,60(4):854-864
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.  相似文献   

6.
In this paper, we consider a piecewise exponential model (PEM) with random time grid to develop a full semiparametric Bayesian cure rate model. An elegant mechanism enjoying several attractive features for modeling the randomness of the time grid of the PEM is assumed. To model the prior behavior of the failure rates of the PEM we assume a hierarchical modeling approach that allows us to control the degree of parametricity in the right tail of the survival curve. Properties of the proposed model are discussed in detail. In particular, we investigate the impact of assuming a random time grid for the PEM on the estimation of the cure fraction. We further develop an efficient collapsed Gibbs sampler algorithm for carrying out posterior computation. A Bayesian diagnostic method for assessing goodness of fit and performing model comparisons is briefly discussed. Finally, we illustrate the usefulness of the new methodology with the analysis of a melanoma clinical trial that has been discussed in the literature.  相似文献   

7.
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis–Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.  相似文献   

8.
Spatially Dependent Polya Tree Modeling for Survival Data   总被引:1,自引:0,他引:1  
Summary With the proliferation of spatially oriented time‐to‐event data, spatial modeling in the survival context has received increased recent attention. A traditional way to capture a spatial pattern is to introduce frailty terms in the linear predictor of a semiparametric model, such as proportional hazards or accelerated failure time. We propose a new methodology to capture the spatial pattern by assuming a prior based on a mixture of spatially dependent Polya trees for the baseline survival in the proportional hazards model. Thanks to modern Markov chain Monte Carlo (MCMC) methods, this approach remains computationally feasible in a fully hierarchical Bayesian framework. We compare the spatially dependent mixture of Polya trees (MPT) approach to the traditional spatial frailty approach, and illustrate the usefulness of this method with an analysis of Iowan breast cancer survival data from the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute. Our method provides better goodness of fit over the traditional alternatives as measured by log pseudo marginal likelihood (LPML), the deviance information criterion (DIC), and full sample score (FSS) statistics.  相似文献   

9.
Sinha D  Maiti T 《Biometrics》2004,60(1):34-40
We consider modeling and Bayesian analysis for panel-count data when the termination time for each subject may depend on its history of the recurrent events. We propose a fully specified semiparametric model for the joint distribution of the recurrent events and the termination time. For this model, we provide a natural motivation, derive several novel properties, and develop a Bayesian analysis based on a Markov chain Monte Carlo algorithm. Comparisons are made to other existing models and methods for panel-count data. We demonstrate the usefulness of our new models and methodologies through the reanalysis of a data set from a clinical trial.  相似文献   

10.
Summary We consider inference for data from a clinical trial of treatments for metastatic prostate cancer. Patients joined the trial with diverse prior treatment histories. The resulting heterogeneous patient population gives rise to challenging statistical inference problems when trying to predict time to progression on different treatment arms. Inference is further complicated by the need to include a longitudinal marker as a covariate. To address these challenges, we develop a semiparametric model for joint inference of longitudinal data and an event time. The proposed approach includes the possibility of cure for some patients. The event time distribution is based on a nonparametric Pólya tree prior. For the longitudinal data we assume a mixed effects model. Incorporating a regression on covariates in a nonparametric event time model in general, and for a Pólya tree model in particular, is a challenging problem. We exploit the fact that the covariate itself is a random variable. We achieve an implementation of the desired regression by factoring the joint model for the event time and the longitudinal outcome into a marginal model for the event time and a regression of the longitudinal outcomes on the event time, i.e., we implicitly model the desired regression by modeling the reverse conditional distribution.  相似文献   

11.
The involvement of Cancer Stem Cells (CSCs) in tumor progression and tumor recurrence is one of the most studied subjects in current cancer research. The CSC hypothesis states that cancer cell populations are characterized by a hierarchical structure that affects cancer progression. Due to the complex dynamics involving CSCs and the other cancer cell subpopulations, a robust theory explaining their action has not been established yet. Some indications can be obtained by combining mathematical modeling and experimental data to understand tumor dynamics and to generate new experimental hypotheses. Here, we present a model describing the initial phase of ErbB2+ mammary cancer progression, which arises from a joint effort combing mathematical modeling and cancer biology. The proposed model represents a new approach to investigate the CSC-driven tumorigenesis and to analyze the relations among crucial events involving cancer cell subpopulations. Using in vivo and in vitro data we tuned the model to reproduce the initial dynamics of cancer growth, and we used its solution to characterize observed cancer progression with respect to mutual CSC and progenitor cell variation. The model was also used to investigate which association occurs among cell phenotypes when specific cell markers are considered. Finally, we found various correlations among model parameters which cannot be directly inferred from the available biological data and these dependencies were used to characterize the dynamics of cancer subpopulations during the initial phase of ErbB2+ mammary cancer progression.  相似文献   

12.
Our present work proposes a new survival model in a Bayesian context to analyze right‐censored survival data for populations with a surviving fraction, assuming that the log failure time follows a generalized extreme value distribution. Many applications require a more flexible modeling of covariate information than a simple linear or parametric form for all covariate effects. It is also necessary to include the spatial variation in the model, since it is sometimes unexplained by the covariates considered in the analysis. Therefore, the nonlinear covariate effects and the spatial effects are incorporated into the systematic component of our model. Gaussian processes (GPs) provide a natural framework for modeling potentially nonlinear relationship and have recently become extremely powerful in nonlinear regression. Our proposed model adopts a semiparametric Bayesian approach by imposing a GP prior on the nonlinear structure of continuous covariate. With the consideration of data availability and computational complexity, the conditionally autoregressive distribution is placed on the region‐specific frailties to handle spatial correlation. The flexibility and gains of our proposed model are illustrated through analyses of simulated data examples as well as a dataset involving a colon cancer clinical trial from the state of Iowa.  相似文献   

13.
Liang LJ  Weiss RE 《Biometrics》2007,63(3):733-741
Phylogenetic modeling is computationally challenging and most phylogeny models fit a single phylogeny to a single set of molecular sequences. Individual phylogenetic analyses are typically performed independently using publicly available software that fits a computationally intensive Bayesian model using Markov chain Monte Carlo (MCMC) simulation. We develop a Bayesian hierarchical semiparametric regression model to combine multiple phylogenetic analyses of HIV-1 nucleotide sequences and estimate parameters of interest within and across analyses. We use a mixture of Dirichlet processes as a prior for the parameters to relax inappropriate parametric assumptions and to ensure the prior distribution for the parameters is continuous. We use several reweighting algorithms for combining completed MCMC analyses to shrink parameter estimates while adjusting for data set-specific covariates. This avoids constructing a large complex model involving all the original data, which would be computationally challenging and would require rewriting the existing stand-alone software.  相似文献   

14.
We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of gene regulatory networks from low-resolution microarray time series, where existence of nonlinear interactions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data; thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear model is demonstrated using synthetic data drawn from ordinary differential equation models and gene expression from an experimental data set of the Arabidopsis thaliana circadian rhythm.  相似文献   

15.
Summary Recently meta‐analysis has been widely utilized to combine information across multiple studies to evaluate a common effect. Integrating data from similar studies is particularly useful in genomic studies where the individual study sample sizes are not large relative to the number of parameters of interest. In this article, we are interested in developing robust prognostic rules for the prediction of t ‐year survival based on multiple studies. We propose to construct a composite score for prediction by fitting a stratified semiparametric transformation model that allows the studies to have related but not identical outcomes. To evaluate the accuracy of the resulting score, we provide point and interval estimators for the commonly used accuracy measures including the time‐specific receiver operating characteristic curves, and positive and negative predictive values. We apply the proposed procedures to develop prognostic rules for the 5‐year survival of breast cancer patients based on five breast cancer genomic studies.  相似文献   

16.
Chi YY  Ibrahim JG 《Biometrics》2006,62(2):432-445
Joint modeling of longitudinal and survival data is becoming increasingly essential in most cancer and AIDS clinical trials. We propose a likelihood approach to extend both longitudinal and survival components to be multidimensional. A multivariate mixed effects model is presented to explicitly capture two different sources of dependence among longitudinal measures over time as well as dependence between different variables. For the survival component of the joint model, we introduce a shared frailty, which is assumed to have a positive stable distribution, to induce correlation between failure times. The proposed marginal univariate survival model, which accommodates both zero and nonzero cure fractions for the time to event, is then applied to each marginal survival function. The proposed multivariate survival model has a proportional hazards structure for the population hazard, conditionally as well as marginally, when the baseline covariates are specified through a specific mechanism. In addition, the model is capable of dealing with survival functions with different cure rate structures. The methodology is specifically applied to the International Breast Cancer Study Group (IBCSG) trial to investigate the relationship between quality of life, disease-free survival, and overall survival.  相似文献   

17.
Clustered interval‐censored data commonly arise in many studies of biomedical research where the failure time of interest is subject to interval‐censoring and subjects are correlated for being in the same cluster. A new semiparametric frailty probit regression model is proposed to study covariate effects on the failure time by accounting for the intracluster dependence. Under the proposed normal frailty probit model, the marginal distribution of the failure time is a semiparametric probit model, the regression parameters can be interpreted as both the conditional covariate effects given frailty and the marginal covariate effects up to a multiplicative constant, and the intracluster association can be summarized by two nonparametric measures in simple and explicit form. A fully Bayesian estimation approach is developed based on the use of monotone splines for the unknown nondecreasing function and a data augmentation using normal latent variables. The proposed Gibbs sampler is straightforward to implement since all unknowns have standard form in their full conditional distributions. The proposed method performs very well in estimating the regression parameters as well as the intracluster association, and the method is robust to frailty distribution misspecifications as shown in our simulation studies. Two real‐life data sets are analyzed for illustration.  相似文献   

18.
Rizopoulos D 《Biometrics》2011,67(3):819-829
In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. In this article, we consider this modeling framework and focus particularly on the assessment of the predictive ability of the longitudinal marker for the time-to-event outcome. In particular, we start by presenting how survival probabilities can be estimated for future subjects based on their available longitudinal measurements and a fitted joint model. Following we derive accuracy measures under the joint modeling framework and assess how well the marker is capable of discriminating between subjects who experience the event within a medically meaningful time frame from subjects who do not. We illustrate our proposals on a real data set on human immunodeficiency virus infected patients for which we are interested in predicting the time-to-death using their longitudinal CD4 cell count measurements.  相似文献   

19.
Weibin Zhong  Guoqing Diao 《Biometrics》2023,79(3):1959-1971
Two-phase studies such as case-cohort and nested case-control studies are widely used cost-effective sampling strategies. In the first phase, the observed failure/censoring time and inexpensive exposures are collected. In the second phase, a subgroup of subjects is selected for measurements of expensive exposures based on the information from the first phase. One challenging issue is how to utilize all the available information to conduct efficient regression analyses of the two-phase study data. This paper proposes a joint semiparametric modeling of the survival outcome and the expensive exposures. Specifically, we assume a class of semiparametric transformation models and a semiparametric density ratio model for the survival outcome and the expensive exposures, respectively. The class of semiparametric transformation models includes the proportional hazards model and the proportional odds model as special cases. The density ratio model is flexible in modeling multivariate mixed-type data. We develop efficient likelihood-based estimation and inference procedures and establish the large sample properties of the nonparametric maximum likelihood estimators. Extensive numerical studies reveal that the proposed methods perform well under practical settings. The proposed methods also appear to be reasonably robust under various model mis-specifications. An application to the National Wilms Tumor Study is provided.  相似文献   

20.
Pennell ML  Dunson DB 《Biometrics》2006,62(4):1044-1052
Many biomedical studies collect data on times of occurrence for a health event that can occur repeatedly, such as infection, hospitalization, recurrence of disease, or tumor onset. To analyze such data, it is necessary to account for within-subject dependency in the multiple event times. Motivated by data from studies of palpable tumors, this article proposes a dynamic frailty model and Bayesian semiparametric approach to inference. The widely used shared frailty proportional hazards model is generalized to allow subject-specific frailties to change dynamically with age while also accommodating nonproportional hazards. Parametric assumptions on the frailty distribution are avoided by using Dirichlet process priors for a shared frailty and for multiplicative innovations on this frailty. By centering the semiparametric model on a conditionally conjugate dynamic gamma model, we facilitate posterior computation and lack-of-fit assessments of the parametric model. Our proposed method is demonstrated using data from a cancer chemoprevention study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号