首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
Gain-of-function mutations in CaV 2.1 (P/Q-type) Ca2+ channels cause familial hemiplegic migraine type 1 (FHM1), a subtype of migraine with aura. Knockin (KI) mice carrying FHM1 mutations show increased neuronal P/Q-type current and facilitation of induction and propagation of cortical spreading depression (CSD), the phenomenon that underlies migraine aura and may activate migraine headache mechanisms. We recently studied cortical neurotransmission in neuronal microcultures and brain slices of FHM1 KI mice, and showed (1) gain-of-function of excitatory neurotransmission, due to increased action potential-evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at fast-spiking interneuron synapses, and (2) a causative link between enhanced glutamate release and facilitation of CSD induced by brief pulses of high K+ in cortical slices. Here, we show that after blockade of either the P/Q-type Ca2+ channels or the NMDA receptors, CSD cannot be induced in wild-type mouse cortical slices. In contrast, blockade of N- or R-type Ca2+ channels has only a small inhibitory effect on CSD threshold and velocity of propagation. Our findings support a model in which Ca2+ influx through presynaptic P/Q-type Ca2+ channels with consequent release of glutamate from recurrent cortical pyramidal cell synapses and activation of NMDA receptors are required for initiation and propagation of the CSD involved in migraine.  相似文献   

2.
Familial hemiplegic migraine type 1 (FHM1) arises from missense mutations in the gene encoding alpha1A, the pore-forming subunit of P/Q-type calcium channels. The nature of the channel disorder is fundamental to the disease, yet is not well understood. We studied how the most prevalent FHM1 mutation, a threonine to methionine substitution at position 666 (TM), affects both ionic current and gating current associated with channel activation, a previously unexplored feature of P/Q channels. Whole-cell currents were measured in HEK293 cells expressing channels containing either wild-type (WT) or TM alpha1A. Calcium currents were significantly smaller in cells expressing TM channels, consistent with previous reports. In contrast, surface expression of TM channels, measured by immunostaining against an extracellular epitope, was not decreased, and Western blots demonstrated that TM alpha1A subunits were expressed as full-length proteins. WT and TM gating currents were isolated by replacing Ca2+ with the nonpermeant cation La3+. The gating currents generated by the mutant channels were one-third that of WT, a deficiency sufficient to account for the observed attenuation in calcium current; the remaining gating current was no different in kinetics or voltage dependence. Thus, the decreased calcium influx seen with TM channels can be attributed to a reduced number of channels available to undergo the voltage-dependent conformational changes needed for channel opening, not to fewer channel proteins expressed on the cell surface. This identification of an intrinsic defect in FHM1 mutant channels helps explain their impact on neurotransmission when they occupy type-specific slots for P/Q channels at central nerve terminals.  相似文献   

3.
Mutations in the Cav2.1 alpha1-subunit of P/Q-type Ca2+ channels cause human diseases, including familial hemiplegic migraine type-1 (FHM1). FHM1 mutations alter channel gating and enhanced channel activity at negative potentials appears to be a common pathogenetic mechanism. Different beta-subunit isoforms (primarily beta4 and beta3) participate in the formation of Cav2.1 channel complexes in mammalian brain. Here we investigated not only whether FHM1 mutations K1336E (KE), W1684R (WR), and V1696I (VI) can affect Cav2.1 channel function but focused on the important question whether mutation-induced changes on channel gating depend on the beta-subunit isoform. Mutants were co-expressed in Xenopus oocytes together with beta1, beta3, or beta4 and alpha2delta1 subunits, and channel function was analyzed using the two-electrode voltage-clamp technique. WR shifted the voltage dependence for steady-state inactivation of Ba2+ inward currents (IBa) to more negative voltages with all beta-subunits tested. In contrast, a similar shift was observed for KE only when expressed with beta3. All mutations promoted IBa decay during pulse trains only when expressed with beta1 or beta3 but not with beta4. Enhanced decay could be explained by delayed recovery from inactivation. KE accelerated IBa inactivation only when co-expressed with beta3, and VI slowed inactivation only with beta1 or beta3. KE and WR shifted channel activation of IBa to more negative voltages. As the beta-subunit composition of Cav2.1 channels varies in different brain regions, our data predict that the functional FHM1 phenotype also varies between different neurons or even within different neuronal compartments.  相似文献   

4.
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.  相似文献   

5.
Ca2+ influx through voltage-gated Ca2+ channels mediates synaptic transmission at numerous central synapses. However, electrophysiological and pharmacological evidence linking Ca+ channel activity with neurotransmitter release in the vertebrate mature spinal cord is scarce. In the current report, we investigated in a slice preparation from the adult turtle spinal cord, the effects of various Ca+ channel antagonists on neurotransmission at terminals from the dorsolateral funiculus synapsing motoneurons. Bath application of tetrodotoxin or NiCl2 prevented the monosynaptic excitatory postsynaptic potentials (EPSPs), and this effect was mimicked by exposure to a zero-Ca2+ solution. Application of polypeptide toxins that block N- and P/Q-type channels (omega-CTx-GVIA and omega-Aga-IVA) reduced the EPSP amplitude in a dose-dependent manner. By analyzing the input resistance and the EPSP time course, and using a paired pulse protocol we determined that both toxins act at presynaptic level to modulate neurotransmitter release. RT-PCR studies showed the expression of N- and P/Q-type channel mRNAs in the turtle spinal cord. Together, these results indicate that N- and P/Q-type Ca2+ channels may play a central role in the regulation of neurotransmitter release in the adult turtle spinal cord.  相似文献   

6.
7.
In the past few years several spontaneous or engineered mouse models with mutations in Ca2+ channel genes have become available, providing a powerful approach to defining Ca2+ channel function in vivo. There have been recent advances in outlining the phenotypes and in the functional analysis of mouse models with mutations in genes encoding the pore-forming subunits of Ca(V)2.1 (P/Q-type), Ca(V)2.2 (N-type) and Ca(V)2.3 (R-type) Ca2+ channels, the channels involved in controlling neurotransmitter release at mammalian synapses. These data indicate that Ca(V)2.1 channels have a dominant and efficient specific role in initiating fast synaptic transmission at central excitatory synapses in vivo, and suggest that the Ca(V)2.1 channelopathies are primarily synaptic diseases. The different disorders probably arise from disruption of neurotransmission in specific brain regions: the cortex in the case of migraine, the thalamus in the case of absence epilepsy and the cerebellum in the case of ataxia.  相似文献   

8.
Mochida S  Few AP  Scheuer T  Catterall WA 《Neuron》2008,57(2):210-216
Short-term synaptic plasticity shapes the postsynaptic response to bursts of impulses and is crucial for encoding information in neurons, but the molecular mechanisms are unknown. Here we show that activity-dependent modulation of presynaptic Ca(V)2.1 channels mediated by neuronal Ca(2+) sensor proteins (CaS) induces synaptic plasticity in cultured superior cervical ganglion (SCG) neurons. A mutation of the IQ-like motif in the C terminus that blocks Ca(2+)/CaS-dependent facilitation of the P/Q-type Ca(2+) current markedly reduces facilitation of synaptic transmission. Deletion of the nearby calmodulin-binding domain, which inhibits CaS-dependent inactivation, substantially reduces depression of synaptic transmission. These results demonstrate that residual Ca(2+) in presynaptic terminals can act through CaS-dependent regulation of Ca(V)2.1 channels to induce short-term synaptic facilitation and rapid synaptic depression. Activity-dependent regulation of presynaptic Ca(V)2.1 channels by CaS proteins may therefore be a primary determinant of short-term synaptic plasticity and information-processing in the nervous system.  相似文献   

9.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

10.
Catterall WA 《Cell calcium》1998,24(5-6):307-323
Electrophysiological studies of neurons reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. High-voltage-activated neuronal Ca2+ channels are complexes of a pore-forming alpha 1 subunit of about 190-250 kDa, a transmembrane, disulfide-linked complex of alpha 2 and delta subunits, and an intracellular beta subunit, similar to the alpha 1, alpha 2 delta, and beta subunits previously described for skeletal muscle Ca2+ channels. The primary structures of these subunits have all been determined by homology cDNA cloning using the corresponding subunits of skeletal muscle Ca2+ channels as probes. In most neurons, L-type channels contain alpha 1C or alpha 1D subunits, N-type contain alpha 1B subunits, P- and Q-types contain alternatively spliced forms of alpha 1A subunits, R-type contain alpha 1E subunits, and T-type contain alpha 1G or alpha 1H subunits. Association with different beta subunits also influences Ca2+ channel gating substantially, yielding a remarkable diversity of functionally distinct molecular species of Ca2+ channels in neurons.  相似文献   

11.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

12.
Since cannabinoid receptors inhibit excitatory synaptic transmission by reducing glutamate release, we have examined whether this might occur through the direct inhibition of presynaptic Ca2+ channels. In cerebrocortical nerve terminals, activation of cannabinoid receptors with WIN55,212-2 reduces the KCl-evoked release of glutamate. However, this inhibition is attenuated when N- and P/Q-type Ca2+ channels are blocked. Through Ca2+ imaging in single nerve terminals, we found that WIN55,212-2 reduced the influx of Ca2+ both in nerve terminals that contain N-type Ca2+ channels and those that contain P/Q-type Ca2+ channels. Thus, cannabinoid receptors modulate the two major Ca2+ channels coupled to glutamate release in the cerebral cortex.  相似文献   

13.
Intracellular Ca2+ concentrations ([Ca2+]i) are regulated in a spatiotemporal manner via both entry of extracellular Ca2+ and mobilization of Ca2+ from intracellular stores. Metabotropic glutamate receptor subtype 1 (mGluR1) is a G protein-coupled receptor that stimulates the inositol 1,4,5-trisphosphate-Ca2+ signaling cascade, whereas Cav2.1 is a pore-forming channel protein of P/Q-type voltage-sensitive Ca2+ channels. In this investigation, we showed that mGluR1 and Cav2.1 are colocalized at dendrites of cerebellar Purkinje neurons and form the heteromeric assembly in both the brain and heterologously expressing COS-7 cells. This assembly occurs through the direct interaction between their carboxyl-terminal intracellular domains. Calcium imaging and whole-cell recording showed that mGluR1 inhibits Cav2.1-mediated [Ca2+]i increases and Ba2+ currents in HEK 293 cells expressing Cav2.1 with auxiliary alpha2/delta and beta1 subunits, respectively. This inhibition occurred in a ligand-independent manner and was enhanced by pre-activation of mGluR1 in a ligand-dependent manner. In contrast, simultaneous stimulation of mGluR1 and Cav2.1 induced large [Ca2+]i increases. Furthermore, the temporally regulated inhibition and stimulation of [Ca2+]i increases by mGluR1 and Cav2.1 were observed at dendrites but not soma of cultured Purkinje neurons. These data suggest that the assembly of mGluR1 and Cav2.1 provides the mechanism that ensures spatiotemporal regulation of [Ca2+]i in glutamatergic neurotransmission.  相似文献   

14.
Direct interactions between G-protein betagamma subunits and N- or P/Q-type Ca(2+) channels mediate the inhibitory action of several neurotransmitters in the brain. Membrane potential, channel phosphorylation, or auxiliary subunit association tightly regulate these interactions and the consequent inhibition of Ca(2+) current. We now provide evidence that intracellular Ca(2+) concentration and phosphoinositides play a stabilizing role in this direct voltage-dependent inhibition. Lowering resting cytosolic Ca(2+) concentration in Xenopus oocytes expressing Ca(V)2Ca(2+) channels strongly decreased basal as well as phasic, agonist-dependent inhibition of Ca(2+) channels by G-proteins. Decreasing phosphoinositide levels also suppressed G-protein inhibition and completely occluded the effects of a subsequent injection of Ca(2+) chelator. Similar regulations are observed in mouse dorsal root ganglia neurons. Alteration of G-protein block by these agents is independent of protein phosphorylation, cytoskeleton dynamics, and GTPase or GDP/GTP exchange activity, suggesting a direct action at the level of the Ca(2+) channel/Gbetagamma-protein interaction. Moreover, affinity binding experiments of intracellular loops of the Ca(V)2.1 Ca(2+) channels to different phospholipids revealed specific interactions between the C-terminal tail of the channel and phosphoinositides. Taken together these data indicate that a Ca(2+)-sensitive interaction of the C-terminal tail of P/Q channels with the plasma membrane is important for G-protein regulation.  相似文献   

15.
Determinants of postsynaptic Ca2+ signaling in Purkinje neurons   总被引:1,自引:0,他引:1  
Neuronal integration in Purkinje neurons involves many forms of Ca2+ signaling. Two afferent synaptic inputs, the parallel and the climbing fibers, provide a major drive for these signals. These two excitatory synaptic inputs are both glutamatergic. Postsynaptically they activate alpha-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Unlike most other types of central neurons, Purkinje neurons do not express NMDA (N-methyl-D-aspartate) receptors (NMDARs). AMPARs in Purkinje neurons are characterized by a low permeability for Ca2+ ions. AMPAR-mediated synaptic depolarization may activate voltage-gated Ca2+ channels, mostly of the P/Q-type. The resulting intracellular Ca2+ signals are shaped by the Ca2+ buffers calbindin and parvalbumin. Ca2+ clearance from the cytosol is brought about by Ca2+-ATPases in the plasma membrane and the endoplasmic reticulum, as well as the Na+-Ca2+-exchanger. Binding of glutamate to mGluRs induces postsynaptic Ca2+-transients through two G protein-dependent pathways: involving (1) the release of Ca2+ ions from intracellular Ca2+ stores and (2) the opening of the cation channel TRPC1. Homer proteins appear to play an important role in postsynaptic Ca2+ signaling by providing a direct link between the plasma membrane-resident elements (mGluRs and TRPC1) and their intracellular partners, including the IP3Rs.  相似文献   

16.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

17.
Presynaptic Ca2+ channels are inhibited by metabotropic receptors. A possible mechanism for this inhibition is that G protein betagamma subunits modulate the binding of the Ca2+ channel beta subunit on the Ca2+ channel complex and induce a conformational state from which channel opening is more reluctant. To test this hypothesis, we analyzed the binding of Ca2+ channel beta and G protein beta subunits on the two separate binding sites, i.e. the loopI-II and the C terminus, and on the full-length P/Q-type alpha12.1 subunit by using a modified mammalian two-hybrid system and fluorescence resonance energy transfer (FRET) measurements. Analysis of the interactions on the isolated bindings sites revealed that the Ca2+ channel beta1b subunit induces a strong fluorescent signal when interacting with the loopI-II but not with the C terminus. In contrast, the G protein beta subunit induces FRET signals on both the C terminus and loopI-II. Analysis of the interactions on the full-length channel indicates that Ca2+ channel beta1b and G protein beta subunits bind to the alpha1 subunit at the same time. Coexpression of the G protein increases the FRET signal between alpha1/beta1b FRET pairs but not for alpha1/beta1b FRET pairs where the C terminus was deleted from the alpha1 subunit. The results suggest that the G protein alters the orientation and/or association between the Ca2+ channel beta and alpha12.1 subunits, which involves the C terminus of the alpha1 subunit and may corresponds to a new conformational state of the channel.  相似文献   

18.
In common with many neurons, adrenal chromaffin cells possess distinct voltage-dependent and voltage-independent pathways for Ca(2+) channel regulation. In this study, the voltage-independent pathway was revealed by addition of naloxone and suramin to remove tonic blockade of Ca(2+) currents via opioid and purinergic receptors due to autocrine feedback inhibition. This pathway requires the Ca(2+)-binding protein neuronal calcium sensor-1 (NCS-1). The voltage-dependent pathway was pertussis toxin-sensitive, whereas the voltage-independent pathway was largely pertussis toxin-insensitive. Characterization of the voltage-independent inhibition of Ca(2+) currents revealed that it did not involve protein kinase C-dependent signaling pathways but did require the activity of a Src family tyrosine kinase. Two structurally distinct Src kinase inhibitors, 4-amino-5-(4-methylphenyl)7-(t-butyl)pyrazolo[3,4-d] pyrimidine (PP1) and a Src inhibitory peptide, increased the Ca(2+) currents, and no further increase in Ca(2+) currents was elicited by addition of naloxone and suramin. In addition, the Src-like kinase appeared to act in the same pathway as NCS-1. In contrast, addition of PP1 did not prevent a voltage-dependent facilitation elicited by a strong pre-pulse depolarization indicating that this pathway was independent of Src kinase activity. PPI no longer increased Ca(2+) currents after addition of the P/Q-type channel blocker omega-agatoxin TK. The alpha(1A) subunit of P/Q-type Ca(2+) channels was immunoprecipitated from chromaffin cell extracts and found to be phosphorylated in a PP1-sensitive manner by endogenous kinases in the immunoprecipitate. A high molecular mass (around 220 kDa) form of the alpha(1A) subunit was detected by anti-phosphotyrosine, suggesting a possible target for Src family kinase action. These data demonstrate a voltage-independent mechanism for autocrine inhibition of P/Q-type Ca(2+) channel currents in chromaffin cells that requires Src family kinase activity and suggests that this may be a widely distributed pathway for Ca(2+) channel regulation.  相似文献   

19.
Voltage-dependent calcium channels constitute one of the main pathways of calcium entry into neurons. They are the principal actors of synaptic transmission by controlling the release of neurotransmitters. They also contribute to numerous other cell functions, such as gene expression or synaptogenesis. These channels, by their essential cell functions, are at the origin of numerous channelopathies resulting from mutations of the genes encoding their different subunits. Familial Hemiplegic Migraine (FHM) represents one such example of these channelopathies. In this human disease, genetic studies have demonstrated the implication of the CACNA1A gene in a type 1 form of FHM. This gene encodes for the Ca(v)2.1 subunit of P/Q calcium channels and is the target of numerous mutations affecting the properties of channel activity. The question on how discrete mutations of this gene are able to alter the activity of the channel and contribute to the physiopathology of FHM remains an open question. The functional characterization of mutated channels in various heterologous expression systems, as well as in vivo in an animal model, provides a molecular scheme of the physiopathology of FHM in which neurons, astrocytes and blood circulation act in concert.  相似文献   

20.
The release properties of glutamatergic nerve terminals are influenced by a number of factors, including the subtype of voltage-dependent calcium channel and the presence of presynaptic autoreceptors. Group III metabotropic glutamate receptors (mGluRs) mediate feedback inhibition of glutamate release by inhibiting Ca(2+) channel activity. By imaging Ca(2+) in preparations of cerebrocortical nerve terminals, we show that voltage-dependent Ca(2+) channels are distributed in a heterogeneous manner in individual nerve terminals. Presynaptic terminals contained only N-type (47.5%; conotoxin GVIA-sensitive), P/Q-type (3.9%; agatoxin IVA-sensitive), or both N- and P/Q-type (42.6%) Ca(2+) channels, although the remainder of the terminals (6.1%) were insensitive to these two toxins. In this preparation, two mGluRs with high and low affinity for l(+)-2-amino-4-phosphonobutyrate were identified by immunocytochemistry as mGluR4 and mGluR7, respectively. These receptors were responsible for 22.2 and 24.1% reduction of glutamate release, and they reduced the Ca(2+) response in 24.4 and 30.3% of the nerve terminals, respectively. Interestingly, mGluR4 was largely (73.7%) located in nerve terminals expressing both N- and P/Q-type Ca(2+) channels, whereas mGluR7 was predominantly (69.9%) located in N-type Ca(2+) channel-expressing terminals. This specific coexpression of different group III mGluRs and Ca(2+) channels may endow synaptic terminals with distinct release properties and reveals the existence of a high degree of presynaptic heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号