首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two mechanisms are thought to be involved in the natural drug resistance of mycobacteria: the mycobacterial cell wall permeability barrier and active multidrug efflux pumps. Genes encoding drug efflux transporters have been isolated from several mycobacterial species. These proteins transport tetracycline, fluoroquinolones, aminoglycosides and other compounds. Recent reports have suggested that efflux pumps may also be involved in transporting isoniazid, one of the main drugs used to treat tuberculosis. This review highlights recent advances in our understanding of efflux-mediated drug resistance in mycobacteria, including the distribution of efflux systems in these organisms, their substrate profiles and their contribution to drug resistance. The balance between the drug transport into the cell and drug efflux is not yet clearly understood, and further studies are required in mycobacteria.  相似文献   

2.
The evolution of resistance to drugs is a major public health concern as it erodes the efficacy of our therapeutic arsenal against bacterial, viral, and fungal pathogens. Increasingly, it is recognized that the evolution of resistance involves genetic changes at more than one locus, both in cases where multiple changes are required to obtain high-level resistance, and where compensatory changes at secondary loci ameliorate the costs of resistance. Similarly, multiple loci are often involved in the evolution of multidrug resistance. There has been widespread interest recently in understanding the evolutionary consequences of multilocus resistance, with many empirical studies documenting extensive patterns of genetic interactions (i.e., epistasis) among the loci involved. Currently, however, there are few general theoretical results available that bridge the gap between classical multilocus population genetics and mathematical epidemiology. Here, such theory is developed to shed new light on these previous studies, and to provide further guidance on the type of data required to predict the evolution of pathogens in response to drug pressure. Our results reveal the importance of feedbacks between the epidemiological and evolutionary dynamics, and illustrate how these feedbacks can be exploited to control resistance. In particular, we show how interventions such as social distancing and isolation can influence rates of recombination, and how this then can slow the spread of multilocus resistance and increase the likelihood of reversion to drug sensitivity once drug therapy has ceased.  相似文献   

3.
Mechanisms of resistance to cisplatin   总被引:20,自引:0,他引:20  
The use of cisplatin in cancer chemotherapy is limited by acquired or intrinsic resistance of cells to the drug. Cisplatin enters the cells and its chloride ligands are replaced by water, forming aquated species that react with nucleophilic sites in cellular macromolecules. The presence of the cisplatin adducts in DNA is thought to trigger cell cycle arrest and apoptosis. Knowledge of the mechanism of action of cisplatin has improved our understanding of resistance. Decreased intracellular concentration due to decreased drug uptake, increased reflux or increased inactivation by sulfhydryl molecules such as glutathione can cause resistance to cisplatin. Increased excision of the adducts from DNA by repair pathways or increased lesion bypass can also result in resistance. Finally, altered expression of regulatory proteins involved in signal transduction pathways that control the apoptotic pathway can also affect sensitivity to the drug. An improved understanding of the mechanisms of resistance operative in vivo has identified targets for intervention and may increase the utility of cisplatin for the treatment of cancer.  相似文献   

4.
司鑫鑫  孙玉洁 《遗传》2014,36(5):411-419
肿瘤耐药是导致肿瘤化疗失败的主要原因, 其产生机制复杂多样, 是多种因素共同作用的结果。近年来, 表观遗传改变在肿瘤耐药中的作用日益受到关注。DNA甲基化是一种重要的表观遗传修饰, 在调节基因表达和维持基因组稳定性中扮演着重要角色。原发性或获得性耐药的肿瘤细胞大多伴随DNA异常甲基化, 越来越多的证据显示, DNA甲基化异常是肿瘤细胞耐药表型产生的重要机制。文章就DNA甲基化异常与肿瘤细胞耐药的关系及相关作用机制进行了综述。  相似文献   

5.
In a past decade became evident that phosphatidylinositol-3-kinase controlled signal transduction cascade (PI3K/Akt/PTEN/mTOR) is implicated in resistance of tumor cells to anticancer drugs. Another well studied mechanism of multidrug resistance is associated with the activity of drug transporters of ABC superfamily (first of all P-glycoprotein (Pgp), MRP1, BCRP). Several mechanisms of cell defense can be turned on in one cell. The interconnections between different mechanisms involved in drug resistance are poorly studied. In the present study we used PC3 and DU145 human prostate cell lines to show that PTEN functional status determines level of cell resistance to some drugs, it correlates with expression level of MRP1 and BCRP proteins. We showed that Pgp is not involved in development of drug resistance in these cells. Transfection of PTEN into PTEN-deficient PC3 as well as rapamycin treatment caused the inhibition of PI3K/Akt/mTOR signaling and resulted in cell sensitization to the action of doxorubicin and vinblastine. We showed that PTEN transfection leads to the change in expression of MRP1 and BCRP. Our results show that in prostate cancer cells at least two mechanisms of drug resistance are interconnected. PTEN and mTOR signaling were shown: to be involved into regulation of MRP1 and BCRP.  相似文献   

6.
There are currently 17 African countries in which animal trypanocidal drug resistance has been reported. Large-scale surveys were carried out in only ten of them. The lack of baseline information is mainly due to the fact that the methods currently available for the detection of drug resistance are laborious, expensive and time consuming. In this review the mechanisms involved in resistance to isometamidium and diminazene will be discussed, together with some new molecular detection tools that have been developed recently enabling faster diagnosis of drug resistance than conventional laboratory or field tests.  相似文献   

7.
Recent data concerning cloning and sequencing of mdr genes involved in multiple drug resistance in higher eukaryotes are reviewed. Structures of ABC-superfamily members, including the mdr products as well as mechanisms of their superproduction at various levels are considered. The possible role of MDR-transporter in normal tissues and various approaches to overcoming the MDR phenotype are discussed. Non-P-glycoprotein mechanisms of drug resistance capable to modify MDR phenotype and applications of mdr in biotechnology are provided.  相似文献   

8.
Genes of multidrug resistance in haematological malignancies   总被引:1,自引:1,他引:1  
Since the early 1970s, multiple drug resistance has been known to exist in cancer cells and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-glycoprotein [P-gp]) capable of extruding various related and unrelated chemotherapeutic drugs. The development of refractory disease in haematological malignancies is frequently associated with the expression of one or several multidrug resistance (MDR) genes. MDR1, multidrug resistance-associated protein (MRP) and lung-resistance protein (LRP) have been identified as important adverse prognostic factors. Recently it has become possible to reverse clinical MDR by blocking P-gp-mediated drug efflux. The potential relevance of these reversal agents of MDR as well as the potential new approaches to treat the refractory disease are discussed in this article. In addition, an array of different molecules and mechanisms by which resistant cells can escape the cytotoxic effect of anticancer drugs has now been identified. These molecules and mechanisms include apoptosis-related proteins and drug inactivation enzymes. Resistance to chemotherapy is believed to cause treatment failure in more than 50% patients. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanism of drug resistance in haematological malignancies with emphasis on molecules involved in MDR. In addition, it brings the survey of methods involved in determination of MDR, in particular P-gp/MDR1, MRP and LRP.  相似文献   

9.
铜绿假单胞菌多重耐药基因的筛选及鉴定   总被引:1,自引:0,他引:1  
[目的]研究铜绿假单胞菌中与耐药性相关的基因.[方法]筛选转座突变体文库中对多种抗菌药物敏感的突变体,通过随机PCR、核苷酸测序及序列比对确定突变体中转座子的插入位点及其破坏的基因.[结果]筛选得到2株对多种抗菌药物敏感的突变体,其中被破坏的基因分别为功能未知的新基因PA2580和PA2800.[结论]PA2580和PA2800可能分别通过参与细胞氧化还原作用和细胞壁合成进而与铜绿假单胞菌耐药性相关.  相似文献   

10.
The conventional laboratory approach to study the mechanisms of drug resistance has been the selection of drug-resistant cell lines by continuous exposure to cytotoxic agents. Such lines, which are selected for resistance to a single agent, frequently display cross-resistance to a number of cytotoxic agents that are unrelated in both structure and proposed mechanism of action. Multidrug-resistant cells display reduced drug accumulation, which is the result of overexpression of a surface glycoprotein (P170). Although resistance to multiple antitumor agents is a common clinical problem in the treatment of cancer, the precise role of the P-glycoprotein-mediated mechanism in human tumors remains to be established. Many alterations in multidrug-resistant cells selected in vitro have been identified. The concomitant expression of multiple phenotypic differences, which appear to be favored by continued and prolonged drug exposure, makes analysis of critical individual resistance pathways more difficult. However, multiple factors may also be involved in the development of clinical resistance. Recent studies have identified alterations in DNA topoisomerase II activity and function as an alternative mechanism that contributes to the multidrug-resistance phenomenon or is responsible for a different type of drug resistance. The precise nature of these changes remains unclear. Available evidence supports the view that expression of the enzyme is an important determinant of cell sensitivity to DNA topoisomerase poisons, but that other changes involved in regulation of enzyme function and/or in the cellular processing of drug-induced DNA damage may be critical in determining the differential pattern of cell response to antitumor agents.  相似文献   

11.
At present, there is no doubt that the signal transduction pathway P13K/Akt/PTEN/mTOR, controlled by phosphatidylinositol-3-kinase, is involved in tumor cell resistance to a number of drugs. Another well-known mechanism determining drug resistance in tumors is associated with the activity of drug transporters of the ABC superfamily (first of all, P-glycoprotein (Pgp), MRP1, BCRP, and LRP). Several mechanisms of cell defense can simultaneously operate in one cell. The interplay of different mechanisms involved in drug resistance is poorly understood. The PC3 and DU145 human prostate cell lines were used to show that the PTEN functional status determined the cell resistance to some drugs and that correlated with the levels of MRP1 and BCRP. Pgp was not involved in drug resistance of these cells. Introduction of PTEN into PTEN-deficient PC3 cells, as well as rapamycin treatment, inhibited Akt and mTOR and sensitized cells to doxorubicin and vinblastine. Exogenous PTEN altered the MRP1 and BCRP expression. The results indicate that at least two mechanisms of drug resistance operate in prostate cancer cells: the PI3K/Akt/PTEN/mTOR pathway and an elevated MRP1 expression. The mechanisms are interconnected: PTEN and mTOR signaling is involved in MRP1 and BCRP expression regulation.  相似文献   

12.
13.
张刚  冯婕 《遗传》2016,38(10):872-880
人们以往大多只关注由敏感细菌通过基因水平转移和自发突变方式获得的耐药性,而忽略了细菌对某类抗生素天然耐药的重要特性,细菌的这种特性又被称为固有耐药。固有耐药由固有耐药基因决定,这类基因是指存在于某类细菌染色体上位置保守的与耐药相关的一类基因。近年来,对固有耐药基因的研究已经越来越受到重视。固有耐药基因的发现不仅可以为新药研制提供药物作用靶标,而且通过阻断病原菌固有耐药基因还可使以往对该类菌不起作用的抗生素药物重新焕发抗菌活性。此外,已有研究表明固有耐药基因能够被移动元件捕获进而可水平转移至其他细菌,因此通过监测固有耐药基因可以预测耐药菌的出现。本文对传统的细菌固有耐药机制包括细胞膜的低渗透性和多药外排泵系统,以及已知重要病原菌的转移酶和代谢相关酶的固有耐药机制进行了介绍。同时,进一步对隐性固有耐药基因的特性进行了阐释,最后探讨了固有耐药与获得性耐药的进化关系,指出固有耐药基因很可能是一些获得性耐药基因的来源。  相似文献   

14.
DNA topoisomerase I is a nuclear enzyme which catalyzes the conversion of the DNA topology by introducing single-strand breaks into the DNA molecule. This enzyme represents a novel and distinct molecule target for cancer therapy by antitopoisomerase drugs belonging to the campthotecin series of antineoplastics. As many tumors can acquire resistance to drug treatment and become refractary to the chemotherapy it is very important to investigate the mechanisms involved in such a drug resistance for circumventing the phenomenon. This article describes the role of topoisomerase I in cell functions and the methods used to assess its in vitro catalytic activity. It reviews the mechanisms of cytotoxicity of the most specific antitopoisomerase I drugs by considering also the phenomenon of drug resistance. Some factors useful to drive the future perspectives in the development of new topoisomerase I inhibitors are also evidenced and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Mindlin SZ  Petrova MA  Bass IA  Gorlenko ZhM 《Genetika》2006,42(11):1495-1511
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic producers, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

16.
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic-producing strains, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

17.
The number of malaria parasite clones per infection-multiplicity of parasite clones-is affected by the transmission intensity, multiplicity increases with increasing transmission. This affects the frequency of parasites' sexual recombination and, if several mutations in different genes are involved, can break down drug resistant genotypes. Therefore, the effects of malaria transmission intensity on the spread of drug resistance could vary depending on the number of genes involved. Here we show that, compared to low transmission, intermediate-high transmission is associated with a 20-100-fold lower risk for the mutations linked to chloroquine resistance and a 6-17 times higher risk for those linked to sulphadoxine-pyrimethamine resistance. This is consistent with the hypothesis of a multigenic basis for chloroquine resistance and a monogenic basis for that of sulphadoxine-pyrimethamine. Reducing transmission intensity could slow the spread of resistance. However, a reduction below a critical threshold (e.g. when parasite prevalence in children 2-9 years old is around 60-80%) could, paradoxically, accelerate the spread of resistance to chloroquine and possibly to other drug combinations whose basis is multigenic. Our findings have important implications for malaria control because increasing drug resistance has a substantial impact on mortality.  相似文献   

18.
19.
Gastric cancer (GC) is one of the most common malignancies in China, and chemotherapy is an important treatment for GC. However, drug resistance remains the main barrier to successful chemotherapy. Drug resistance is a complex phenomenon resulting from a combination of factors and mechanisms. The number of known relevant genes implicated in this phenomenon is growing rapidly. This review focuses on the mechanisms involved in the occurrence of drug resistance and explores the functions of several relevant genes in GC chemotherapy resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号