首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Gonadotrope function during continuous infusion of estradiol (E2) was evaluated in orchidectomized sheep (wethers). Serum concentrations of LH were reduced (p less than 0.05) within 3 h of introduction of E2 and remained depressed for the period of E2 delivery (48 h). Gonadotrope responsiveness (change in LH secretion induced by a 500-ng GnRH challenge, i.v.) was assessed 0, 3, 6, 12, 24, or 48 h after initiation of E2 infusion. Gonadotrope responsiveness was augmented (p less than 0.05) 12, 24, and 48 h after first introduction of E2. In a companion study, anterior pituitary tissue was collected 0, 3, 6, 12, 24, or 48 h after the beginning of E2 infusion. Tissue concentration of GnRH receptor was increased 3-fold within 12 h of first introduction of E2. Tissue stores of LH were also increased (p less than 0.05) during E2 infusion. Passive immunization against GnRH increased (p less than 0.05) tissue stores of LH, but had no effect on GnRH receptor concentration. Passive immunization against GnRH and concurrent infusion of E2 increased (p less than 0.05) both tissue stores of LH and tissue concentrations of GnRH receptor. The acute suppression of LH secretion induced by infusion of E2 was not affected by concurrent episodic administration of GnRH (200 ng/hourly pulse). However, serum concentrations of LH were restored to pretreatment levels within 12 h of initiation of E2 infusion and episodic delivery of GnRH. These data indicate that E2 acts in wethers to suppress gonadotropin secretion while simultaneously increasing GnRH receptor concentration, tissue stores of LH, and gonadotrope responsiveness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We recently demonstrated that chronic daily administration of a superactive GnRH analog to intact rats resulted in an initial stimulation of serum LH levels with a subsequent return of LH levels to baseline at a time when testosterone levels were marked decreased. These data demonstrated pituatary desensitization following chronic GnRH analog treatment. Administration of GnRH analog with a dose of testosterone which did not markedly lower serum LH levels when administered alone prevented the stimulation of LH secretion by analog. The present studies were undertaken to determine the effects of GnRH analog and testosterone administration on the regulation of pituitary GnRH receptors. Pituitary GnRH receptor binding was increased by analog treatment alone at 20 days and returned to control levels at 40 and 60 days of treatment in parallel to the observed changes in serum LH, demonstrating that one mechanism by which chronic GnRH analog treatment leads to pituitary desensitization is down-regulation of pituitary GnRH receptors. Testosterone administration alone decreased pituitary GnRH receptor binding. Combined GnRH analog and testosterone administration prevented the increase in pituitary GnRH receptors observed with analog administration alone. These studies demonstrate that changes in pituitary GnRH receptor binding correlate with changes in serum LH and that the stimulatory effects of analog administration on LH are sensitive to inhibition by small doses of testosterone.  相似文献   

3.
Acute (0.5–4 h) treatment of estradiol (E)-primed female rat pituitary cells with progesterone (P) augments gonadotropin-releasing hormone (GnRH)-induced LH release, whereas chronic (48 h) P-treatment reduces pituitary responsiveness to the hypothalamic decapeptide. Dispersed E-primed (48 h, 1 nM) rat pituitary cells were cultured for 4 or 48 h in the presence of 100 nM P to assess the effects of the progestagen on GnRH receptors and on gonadotrope responsiveness to the decapeptide. P-treatment (4 h) significantly augmented GnRH-receptor concentrations (4.44 ± 0.6 fmol/106 cells) as compared to cells treated only with E (2.6 ± 0.5fmol/106 cells). Parallel significant changes in GnRH-induced LH secretion were observed. The acute increase in GnRH-receptor number was nearly maximal (180% of receptor number in cells treated with E alone) within 30 min of P addition. Chronic P-treatment (48 h) significantly reduced pituitary responsiveness to GnRH as compared to E-treatment. The GnRH-receptor concentrations (3.9 ± 0.6 fmol/106 cells), however, remained elevated above those in E-primed cells. GnRH-receptor affinity was not influenced by any of the different treatments. These results indicate that the acute facilitatory P-effect on GnRH-induced LH release is at least chronologically closely related to an increase in GnRH-receptor concentration. The chronic negative P-effect on pituitary responsiveness to GnRH, however, shows no relation to changes in available GnRH receptors.  相似文献   

4.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
There is a monotypic change in basal serum gonadotropin levels following retinol treatment of chronically vitamin A-deficient (VAD) male rats. The present study was undertaken to investigate the hypothesis that the specific increase in serum follicle-stimulating hormone (FSH) represents a change in gonadotrope responsiveness to gonadotropin-releasing hormone (GnRH). To this end, a test dose of GnRH was given to VAD rats pre-, 5 days post-, and 10 days postreplacement of vitamin A (PVA). In VAD rats, basal serum FSH and luteinizing hormone (LH) levels were higher than those of controls. Increased LH/testosterone ratios, both in basal levels and in the secretory response to GnRH, suggested Leydig cell hyporesponsiveness in VAD animals. Both the FSH and LH responses to GnRH were maximal at 1 h, declining thereafter. Although the absolute increments in FSH and LH 1 h after GnRH in VAD rats were greater than in controls, the percent increase in FSH tended to be lower in VAD rats and to increase after vitamin A replacement. The specific enhancement of FSH release PVA became evident only when assessing total secretion of FSH and LH after GnRH. Luteinizing hormone response to GnRH increased PVA, but not significantly, while FSH secretion after GnRH increased both 5 and 10 days PVA, times during which basal FSH levels were also increasing. These changes in FSH secretion could not be attributed either to increases in endogenous GnRH or to changes in testosterone or estradiol levels. Basal serum androgen binding protein levels, elevated in VAD animals, did not respond to the acute increases in FSH after GnRH and remained high PVA, suggesting no acute change in Sertoli cell function. Thus, the PVA increase in FSH secretion unmasks a partial inhibition of the gonadotrope present in the retinol-deficient, retinoic acid-fed male rat.  相似文献   

6.
Gonadotropin-releasing hormone (GnRH) stimulates luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release from pituitary gonadotrope cells. Additional receptor-mediated actions of the releasing hormone include homologous regulation of both the GnRH receptor and of cell responsiveness. While it is apparent that the release mechanism is Ca2+ mediated, it remains unclear how this receptor-mediated action is integrated with regulation of the receptor and with cell responsiveness. It is the purpose of this review to describe the requirements for gonadotropin release as well as for receptor and response regulation in order to prepare an integrated model for these actions of the releasing hormone.  相似文献   

7.
Gonadotropin secretion was examined in ovariectomized sheep after passive immunization against gonadotropin-releasing hormone (GnRH). Infusion of ovine anti-GnRH serum, but not control antiserum, rapidly depressed serum concentrations of luteinizing hormone (LH). The anti-GnRH-induced reduction in serum LH was reversed by circhoral (hourly) administration of a GnRH agonist that did not cross-react with the anti-GnRH serum. In contrast, passive immunization against GnRH led to only a modest reduction in serum concentrations of follicle-stimulating hormone (FSH). Pulsatile delivery of the GnRH agonist did not influence serum concentrations of FSH. Continuous infusion of estradiol inhibited and then stimulated gonadotropin secretion in animals passively immunized against GnRH, with gonadotrope function driven by GnRH agonist. However, the magnitude of the positive feedback response was only 10% of the response noted in controls. These data indicate that the estradiol-induced surge of LH secretion in ovariectomized sheep is the product of estrogenic action at both hypothalamic and pituitary loci. Replacement of the endogenous GnRH pulse generator with an exogenous generator of GnRH-like pulses that were invariant in frequency and amplitude could not fully reestablish the preovulatory-like surge of LH induced by estradiol.  相似文献   

8.
Advances in our understanding of the complexity of GnRH actions at the pituitary and the various mechanisms involved in mediating differential LH and FSH biosynthesis and secretion at the gonadotrope, are continually emerging. In this review, we summarise recent studies pertaining to GnRH and GnRH receptor phylogeny, the divergent signalling and trafficking pathways initiated and utilised by GnRH and its receptor, and the pathways that mediate gonadotropin secretion from the gonadotrope.  相似文献   

9.
Nine Friesian dairy cows were treated with 2.5 micrograms GnRH i.v. at 2-h intervals for 48 h commencing between Days 3 and 8 post partum. Hormone concentrations were measured in jugular venous plasma. An episodic pattern of LH release was induced in all animals and there was no significant change in amplitude during treatment. However, cows treated between Days 7 and 8 ('late') showed higher LH episode peaks than did those treated between Days 3 and 6 ('early'). Plasma FSH concentrations showed a less clear episodic pattern in response to GnRH injection. The mean height of FSH responses to GnRH tended to be higher in the 'early' group than in the 'late' group, as did mean FSH concentrations during the pretreatment sampling period. Although clear episodic changes were not observed, GnRH treatment induced a rapid sustained rise in plasma oestradiol-17 beta concentrations, indicating the responsiveness of ovarian follicles to gonadotrophin stimulation early in the post-partum period. There was no difference in oestradiol-17 beta concentrations between the 'early' and 'late' groups during the treatment period. Only one cow exhibited preovulatory-type LH, FSH and oestradiol-17 beta surges during the 96-h post-treatment sampling period. It is concluded that: (1) responsiveness to GnRH pulses increases significantly and FSH responsiveness tends to decrease with time post partum, (2) ovarian follicles are able to secrete oestradiol-17 beta in response to GnRH-induced LH and FSH release during the early post-partum period and there is no time-dependent change in responsiveness; and (3) the lack of preovulatory surges, except in one cow, may reflect a temporary defect in the positive-feedback mechanism by which high concentrations of oestradiol-17 beta induce preovulatory gonadotrophin release.  相似文献   

10.
P M Conn  D C Rogers 《Life sciences》1979,24(26):2461-2465
GnRH-stimulated, but not basal, luteinizing hormone (LH) release from cultured pituitary cells requires extra-cellular calcium. The present studies were designed to show whether cells which had lost responsiveness to GnRH in the absence of extracellular calcium (“Ca2+-depleted cells”) could regain responsiveness by readdition of calcium to the media. The addition of calcium-containing medium to cells which were preincubated (75 min) in calcium-free medium resulted in elevated basal LH release. Addition of GnRH to the media in the presence of calcium did not cause additional stimulation of LH release above the elevated basal level. Incubation of Ca2+-depleted cells in calcium-containing media for 2 h before measuring responsiveness depressed the basal level to near that seen in control cells and GnRH was able to stimulate LH release, but not to as high a level as in control cells (which were preincubated in 1 mM Ca2+-containing media). After incubation of calcium depleted cells in calcium-containing media for 3 h or 5 h, the basal and stimulated levels of LH response were statistically indistinguishable from those seen in control cells.  相似文献   

11.
12.
The pituitary response to exogenous GnRH was studied in 8 colts of Quarter Horse phenotype from 32 to 96 weeks of age. Colts were from dams treated daily from Day 20 to 325 of gestation with (1) 2 ml neobee oil per 50 kg body weight (controls); or (2) 2 ml altrenogest per 50 kg body weight. GnRH challenges (5 micrograms/kg body weight) were administered every 8 weeks from 32 to 96 weeks of age to estimate pituitary content of LH. Blood samples were collected every 20 min for 4 h before GnRH and 15, 30, 45, 60, 90, 120, 180, 240 and 360 min after GnRH. Serum concentrations of LH and FSH were determined for the 2 pre-GnRH and all post-GnRH samples. Baseline concentrations (mean of 2 pre-GnRH samples) of LH and FSH were not affected by treatment (P greater than 0.05). Serum concentrations of LH declined from 40 to 56 weeks and rose again between 72 and 80 weeks. Basal concentrations of FSH declined from 32 to 56 weeks, and varied widely after 56 weeks. The maximum LH response to GnRH (highest concentration after GnRH minus baseline) declined steadily in both groups for 48 to 64 weeks but remained relatively constant in both groups after 64 weeks. The maximum FSH response to GnRH declined from 32 to 64 weeks then remained relatively constant in both groups. The GnRH-induced gonadotrophin release remained low with a transient increase at 72 weeks for both hormones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
During the nonbreeding season the pituitary and ovarian responses to a subcutaneous GnRH infusion were investigated in acyclic, lactating Mule ewes which exhibit a deep seasonal anestrus and in Finn x Dorset ewes in which seasonal anestrus is ill-defined. Each breed received 10 d of progestagen priming before being subdivided into 3 groups. In Group L + G, 5 lactating ewes received GnRH (250 ng/h sc) for 96 h; in Group D + G, 5 dry ewes received GnRH (250 ng/h sc) for 96 h; in Group L, 5 lactating ewes received saline vehicle for 96 h. The infusions began when lactating and dry ewes were approximately 28 d and 120 d post partum, respectively. Blood samples were collected for LH, progesterone and estradiol analysis. Estrous behavior was monitored between Day -4 and Day +7. On Day +7 the reproductive tract was also examined. In the Mule ewes the mean plasma LH concentration increased (P < 0.05) following minipump insertion in each treatment group, although mean LH levels were greater (P < 0.05) in Group D + G, than in either Group L + G or Group L. Following the GnRH infusion, mean plasma estradiol levels increased (P < 0.05) in Group D + G but not in Group L + G. A preovulatory LH surge and subsequent ovulation occurred in 5 5 , 2 5 and 0 5 ewes from Group D + G, L + G and L, respectively, and estrus was recorded in 5 5 , 1 5 and 0 5 of these ewes, respectively. The LH surges began earlier (P < 0.05) (43.2 +/- 6.8 h vs 77.0 +/- 1.0 h) and the ovulation rate was greater (2.2 +/- 0.37 vs 1.00 +/- 0.00) in Group D + G than Group L + G. In the Finn x Dorset ewes mean LH concentrations increased (P < 0.05), to a similar level following minipump insertion in Groups D + G and L + G, but not Group L. The elevated LH levels were accompanied by increased (P < 0.05) plasma estradiol levels in Group D + G, but not in Group L + G. The GnRH infusion culminated in an LH surge and estrous behavior in 5 5 , 1 5 and 0 5 ewes from Groups D + G, L + D and L, respectively. The interval to the LH surge was similar between Group D + G (48.4 +/- 6.6 h) and Group L + G (46.0 h). Ovulation was evident in those ewes which exhibited an LH surge plus one additional ewe from Group L + G. The mean ovulation rate was greater in Group D + G (4.00 +/- 1.05) than in Group L + G (1.5 +/- 0.50). These data show that continuous GnRH infusion can consistently induce out of season breeding in the nonlactating Mule and Finn x Dorset ewe but can not break combined seasonal and lactational anestrous in these breeds. Further, between-breed differences are evident in the site along the hypothalamic-pituitary-ovarian axis at which reproduction is compromised in ewes at the same chronological stage post partum.  相似文献   

14.
Maitotoxin (MTX) stimulates gonadotropin release from pituitary cell cultures. The time course and efficacy of LH release in response to GnRH and to MTX are similar; both secretagogues require extracellular Ca2+ and are inhibited by the selective Ca2+ ion channel antagonist methoxyverapamil (D600). LH release in response to either GnRH or MTX is not measurably inhibited by two other chemical classes of Ca2+ ion channel inhibitors represented by nifedipine and by diltiazem. The two secretagogues are nonadditive in their action on LH release when presented at high doses and prior studies indicate that MTX has no endogenous ionophoretic activity. These observations indicate that MTX likely stimulates LH release due to activation of the GnRH receptor associated Ca2+-ion channel in the gonadotrope. We have therefore assessed the functional state of this channel during the development of homologous desensitization of the gonadotrope to GnRH by measuring the ability of MTX to stimulate LH release. Cells were desensitized with GnRH in the presence of 3 mM EGTA. Under these conditions, the cells become refractory to GnRH in the absence of gonadotropin release since the latter process, but not the former, requires extracellular Ca2+. Accordingly, this approach allows assessment of the degree of desensitization in the absence of the influence of gonadotropin depletion. Such desensitized cells are less responsive to GnRH. Desensitized pituitary cells also respond with diminished efficacy and potency to MTX three or more hours after GnRH treatment but not at an earlier time (1 h) when GnRH receptors are diminished. These data are consistent with a model in which homologous desensitization is viewed as developing in two phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3'-kinase/MAPK pathway in the LbetaT2 gonadotrope cell line. We then demonstrated that PGF(2alpha) and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF(2alpha), but not PGI2 or PGE2, reduced GnRH-induction of LHbeta gene expression, but not the alpha-gonadotropin subunit or the FSHbeta subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF(2alpha), but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF(2alpha)-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer.  相似文献   

16.
The inhibitory effects of the potent GnRH antagonist, [Ac-D-pCl-Phe1,2,D-Trp3,D-Arg6,DAla10]GnRH (GnRHant) upon pituitary-gonadal function were investigated in normal and castrated male rats. The antagonist was given a single subcutaneous (s.c.) injections of 1-500 micrograms to 40-60 day old rats which were killed from 1 to 7 days later for assay of pituitary GnRH receptors, gonadal receptors for LH, FSH, and PRL, and plasma gonadotropins, PRL, and testosterone (T). In intact rats treated with low doses of the antagonist (1, 5 or 10 micrograms), available pituitary GnRH receptors were reduced to 40, 30 and 15% of the control values, respectively, with no change in serum gonadotropin, PRL, and T levels. Higher antagonist doses (50, 100 or 500 micrograms) caused more marked decreases in free GnRH receptors, to 8, 4 and 1% of the control values, which were accompanied by dose-related reductions in serum LH and T concentrations. After the highest dose of GnRHant (500 micrograms), serum LH and T levels were completely suppressed at 24 h, and serum levels of the GnRH antagonist were detectable for up to 3 days by radioimmunoassay. The 500 micrograms dose of GnRHant also reduced testicular LH and PRL receptors by 30 and 50% respectively, at 24 h; by 72 h, PRL receptors and LH receptors were still slightly below control values. In castrate rats, treatment with GnRHant reduced pituitary GnRH receptors by 90% and suppressed serum LH and FSH to hypophysectomized levels. Such responses in castrate animals were observed following injection of relatively low doses of GnRHant (100 micrograms), after which the antagonist was detectable in serum for up to 24 h. These data suggest that extensive or complete occupancy of the pituitary receptor population by a GnRH antagonist is necessary to reduce plasma gonadotropin and testosterone levels in intact rats. In castrate animals, partial occupancy of the available GnRH receptor sites appears to be sufficient to inhibit the elevated rate of gonadotropin secretion.  相似文献   

17.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

18.
The effect of stress-like concentrations of cortisol on oestradiol-induced change in LH secretion and GnRH receptor expression was evaluated in orchidectomized sheep (wethers). Twenty-four wethers were assigned at random to one of the four treatment groups in a 2x2 factorial design (n=6 wethers/group). Wethers received cortisol (90 microg/kg/h; groups 2 and 4) or a comparable volume of cortisol delivery vehicle (groups 1 and 3) by continuous infusion for 48 h. During the final 24 h of infusion, wethers received oestradiol (6 ng/kg/h; groups 3 and 4) or oestradiol delivery vehicle (groups 1 and 2). The pattern of LH secretion was assessed during a 3-h period of intensive blood collection beginning 21 h after initiation of oestradiol infusion. Although neither cortisol nor oestradiol alone affected (P>0.05) mean serum concentration of LH or LH pulse frequency, serum LH and the frequency of secretory episodes of LH were significantly reduced (P<0.05) in wethers receiving cortisol and oestradiol in combination. Anterior pituitary tissue was collected at the end of the infusion period. Oestradiol increased (P<0.05) tissue concentrations of GnRH receptor and GnRH receptor mRNA. Although cortisol alone did not affect (P>0.05) basal concentrations of receptor or receptor mRNA, the magnitude of oestradiol-induced increase in GnRH receptor and GnRH receptor mRNA was significantly reduced in wethers receiving cortisol and oestradiol concurrently. Conversely, steady-state concentrations of mRNA encoding the LHbeta and FSHbeta subunits were increased (P<0.05) in wethers receiving cortisol. These observations demonstrate that stress-like concentrations of cortisol act in concert with oestradiol to suppress LH secretion. In addition, cortisol blocks oestradiol-dependent increase in pituitary tissue concentrations of GnRH receptor and GnRH receptor mRNA.  相似文献   

19.
Several characteristics of the hypothalamo-hypophysial axis were examined after down-regulation of GnRH receptors and the desensitization which accompanies it in the ewe. Down-regulation of GnRH receptors, induced by i.v. infusion of GnRH (2.5 micrograms/h) for 24 h, resulted in a 50% decrease in the number of receptors for GnRH at the end of the infusion period. The number of receptors for GnRH was restored to control values by 6 h after the infusion ended and remained stable at 12, 24, 48, 72 and 96 h after infusion. The amount of LH released in response to an i.v. injection of 100 micrograms GnRH was reduced by 82% at the end of the infusion period, but there was no significant reduction in the GnRH-induced release of FSH. The GnRH-induced release of LH was restored by 12 h after the infusion ended; however, the amount of FSH released in response to GnRH was not different from control values at any time. A decrease in both the amplitude and frequency of endogenous pulses of LH was observed from 0 to 12 h after the end of the infusion period. At no time did the concentration of gonadotrophins in the pituitary change. These results demonstrate that replenishment of receptors for GnRH and recovery of the ability of the gonadotroph to release LH are associated events. However, the GnRH-induced release of FSH does not appear to be closely related to the number of GnRH receptors. We suggest that continuous exposure to GnRH may inhibit the hypothalamic pulse generator as well as the pituitary response to the pulse generator.  相似文献   

20.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号