首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

2.
Hoson T  Masuda Y  Nevins DJ 《Plant physiology》1992,98(4):1298-1303
Polyclonal antibodies, raised against β-d-glucans prepared from oat (Avena sativa L.) caryopses, cross-reacted specifically with (1→3),(1→4)-β-d-glucans when challenged in a dot blot analysis of related polymers bound to a cellulose thin layer chromatography plate. The antibodies suppressed indoleacetic acid (IAA)-induced elongation of segments from maize (Zea mays L.) coleoptiles when the outer surface was abraded. However, IAA-induced elongation of nonabraded segments or segments with abrasion restricted to the interior of the cylinder was not influenced by the antibodies. Fab fragments prepared from the antibodies gave similar results. The capacity for IAA to overcome outward curvature of split coleoptile segments was partially reversed by treatment of the segments with the antibodies. Fluorescence microscopy revealed that antibody penetration was largely restricted to the epidermal cell wall region. These results support the view that the degradation of (1→3),(1→4)-β-d-glucans in the outer epidermal cell wall serves an essential role in auxin-induced elongation of Poaceae coleoptiles.  相似文献   

3.
Trocha P  Daly JM 《Plant physiology》1974,53(4):527-532
Polymeric carbohydrates in 14C-labeled germ tube and uredospore walls of Uromyces phaseoli var. typica were studied by permethylation and by enzymatic hydrolysis. The native structure of the uredospore wall limited the effectiveness of both techniques with this wall, but evidence for two distinct polysaccharides was obtained. A linear (1→3) glucan, containing minor quantities of (1→6) linkages, may account for most of the glucose in the uredospore wall. A second uredospore polymer was a glucomannan similar to one reported for other rust fungi in that it consisted of approximately equal numbers of β(1→3) and β(1→4) mannosidic linkages with glucose as a minor component at the nonreducing end. Branching, most likely by (1→6) mannose links, was low. In contrast to uredospore wall, considerably more germ tube polysaccharide was accessible to enzymes and to methylation. Methylation studies indicate that (1→3) glucose and mannose bonds occur predominantly. Evidence from hydrolysis with exo- (β)-(1→3) glucanase suggests distinct wall regions of β(1→3) glycan, highly branched by (1→6) bonds, as well as wall regions of a glucomannan with alternating (1→3) glucose and (1→3) mannose residues. Polymer heterogeneity was indicated by differences in the proportions of mannose, glucose, and galactose as reducing end groups in different solubility fractions. In germ tube walls, but not in uredospore walls, glucosamine apparently existed as part of chitin polymer as evidenced by the isolation of N,N-diacetylchitobiose from chitinase digestion.  相似文献   

4.
The ultrastructure of isolated cell walls of Saccharomyces cerevisiae from the log and stationary phases of growth was studied after treatment with the following enzymes: purified endo-β-(1 → 3)-glucanase and endo-β-(1 → 6)-glucanase produced by Bacillus circulans; purified exo-β-glucanase and endo-β-(1 → 3)-glucanase produced by Schizosaccharomyces versatilis; commercial Pronase. While exo-β-glucanase from S. versatilis had no electron microscopically detectable effect on the walls, Pronase removed part of the external amorphous wall material disclosing an amorphous wall layer in which fibrils were indistinctly visible. Amorphous wall material was completely removed by the effect of either endo-β-(1 → 3)- or endo-β-(1 → 6)-glucanase of B. circulans or by a mixture of the two enzymes. As a result of these treatments a continuous fibrillar component appeared, composed of densely interwoven microfibrils resisting further action by both of the B. circulans enzymes. The fibrillar wall component was also demonstrated in untreated cell walls by electron microscopy after negative staining. Because of the complete disappearance of the fibrils following treatment with the S. versatilis endo-β-(1 → 3)-glucanase it can be concluded that this fibrillar component is composed of β-(1 → 3)-linked glucan. Bud scars were the only wall structures resistant to the effect of the latter enzyme.  相似文献   

5.
Hohl M  Hong YN  Schopfer P 《Plant physiology》1991,95(4):1012-1018
The release of soluble carbohydrates from isolated cell wall of maize (Zea mays L.) was investigated in the range of pH 1 to 8.5. The pH profile demonstrated two peaks, a broad peak at pH 6 due to enzymatic breakdown of β-glucan to monosaccharides (wall autolysis) and a sharp peak at pH 2.5 due to acid-mediated, nonenzymatic liberation of macromolecular β-glucan from the wall. The pH dependence of acid-induced growth and cell-wall extensibility of coleoptile segments closely agrees with the pH dependence of acid-mediated β-glucan solubilization in the isolated wall. However, there is no evidence that enzymatic or nonenzymatic β-glucan solubilization is involved in the mechanism of auxin-mediated growth.  相似文献   

6.
Pisum sativum L. (cv. Lincoln) epicotyl cell walls show autohydrolysis and release into the incubation medium up to 120 μg of sugar per mg of cell wall dry weight in 30 h. Cell walls from younger epicotyls with high growth capacity showed higher auto-lytic capacity than older epicotyls. This suggests that both processes, growth and au-tolysis, are related. The proteins responsible for autolysis were extracted from the wall fraction with high saline solution (3 M LiCl) and enzymatic activities associated with the proteins were studied. The highest activity corresponded to α-galactosidase; lower activities were found for β-galactosidase, a-arabinosidase and exoglucanase. Changes in enzymatic activities and changes in the proportion of sugars released in autolysis by cell walls during the growth of epicotyls support the notion that α-galac-tosidase is one of the enzymes involved in the process of autolysis, and that the liberation of arabinose and galactose in this process occurs as arabinogalactan.  相似文献   

7.
Excised Zea mays L. embryos were cultured on Linsmaier and Skoog medium. Coleoptiles were sampled at regular intervals and the length, fresh weight, cell wall weight, and cell wall neutral sugar composition were determined. A specific β-d-glucanase from Bacillus subtilis was used to determine the content of a (1 → 3),(1 → 4)-β-d-glucan.  相似文献   

8.
Incubation of purified cell wall fragments from corn (Zea mays) coleoptiles results in solubilization of some of the wall dry matter. The portion of the weight loss due to enzymatic autolysis is due mainly to solubilization of a glucan and, to a small extent, to liberation of free glucose. No other carbohydrate wall components or sugars other than glucose are solubilized despite the high concentrations of, for example, galactans, arabans, and xylans in the walls. The glucan has been partially characterized and found to be a lichenan-like polymer composed of 1→3 and 1→4 linked glucosyl units.  相似文献   

9.
Since xyloglucan is believed to bind to cellulose microfibrils in the primary cell walls of higher plants and, when isolated from the walls, can also bind to cellulose in vitro, the binding mechanism of xyloglucan to cellulose was further investigated using radioiodinated pea xyloglucan. A time course for the binding showed that the radioiodinated xyloglucan continued to be bound for at least 4 hours at 40°C. Binding was inhibited above pH 6. Binding capacity was shown to vary for celluloses of different origin and was directly related to the relative surface area of the microfibrils. The binding of xyloglucan to cellulose was very specific and was not affected by the presence of a 10-fold excess of (1→2)-β-glucan, (1→3)-β-glucan, (1→6)-β-glucan, (1→3, 1→4)-β-glucan, arabinogalactan, or pectin. When xyloglucan (0.1%) was added to a cellulose-forming culture of Acetobacter xylinum, cellulose ribbon structure was partially disrupted indicating an association of xyloglucan with cellulose at the time of synthesis. Such a result suggests that the small size of primary wall microfibrils in higher plants may well be due to the binding of xyloglucan to cellulose during synthesis which prevents fasciation of small fibrils into larger bundles. Fluorescent xyloglucan was used to stain pea cell wall ghosts prepared to contain only the native xyloglucan:cellulose network or only cellulose. Ghosts containing only cellulose showed strong fluorescence when prepared before or after elongation; as predicted, the presence of native xyloglucan in the ghosts repressed binding of added fluorescent xyloglucan. Such ghosts, prepared after elongation when the ratio of native xyloglucan:cellulose is substantially reduced, still showed only faint fluorescence, indicating that microfibrils continue to be coated with xyloglucan throughout the growth period.  相似文献   

10.
Cells of proso millet (Panicum miliaceum L. cv Abarr) in liquid culture and leaves of maize seedlings (Zea mays L. cv LH51 × LH1131) readily incorporated d-[U-14C]glucose and l-[U-14C]arabinose into soluble and cell wall polymers. Radioactivity from arabinose accumulated selectively in polymers containing arabinose or xylose because a salvage pathway and C-4 epimerase yield both nucleotide-pentoses. On the other hand, radioactivity from glucose was found in all sugars and polymers. Pulse-chase experiments with proso millet cells in liquid culture demonstrated turnover of buffer soluble polymers within minutes and accumulation of radioactive polymers in the cell wall. In leaves of maize seedlings, radioactive polymers accumulated quickly and peaked 30 hours after the pulse then decreased slowly for the remaining time course. During further growth of the seedlings, radioactive polymers became more tenaciously bound in the cell wall. Sugars were constantly recycled from turnover of polysaccharides of the cell wall. Arabinose, hydrolyzed from glucuronoarabinoxylans, and glucose, hydrolyzed from mixed-linkage (1→3, 1→4)β-d-glucans, constituted most of the sugar participating in turnover. Arabinogalactans were a large portion of the buffer soluble (cytoplasmic) polymers of both proso millet cells and maize seedlings, and these polymers also exhibited turnover. Our results indicate that the primary cell wall is not simply a sink for various polysaccharide components, but rather a dynamic compartment exhibiting long-term reorganization by turnover and alteration of specific polymers during development.  相似文献   

11.
Cell-free extracts, membranous fractions, and cell wall preparations from Schizosaccharomyces pombe were examined for the presence of (1 → 3)-β-, (1 → 3)-α-, and (1 → 6)-β-glucanase activities. The various glucanases were assayed in cells at different growth stages. Only (1 → 3)-β-glucanase activity was found, and this was associated with the cell wall fraction. Chromatographic fractionation of the crude enzyme revealed two endo-(1 → 3)-β-glucanases, designated as glucanase I and glucanase II. Glucanase I consisted of two subunits of molecular weights 78,500 and 82,000, and glucanase II was a single polypeptide of 75,000. Although both enzymes had similar substrate specificities and similar hydrolytic action on laminarin, glucanase II had much higher hydrolytic activity on isolated cell walls of S. pombe. On the basis of differential lytic activity on cell walls, glucanase II was shown to be present in conjugating cells and highest in sporulating cells. Glucanase II appeared to be specifically involved in conjugation and sporulation since vegetative cells and nonconjugating and nonsporulating cells did not contain this enzyme. The appearance of glucanase II in conjugating cells may be due to de novo enzyme synthesis since no activation could be demonstrated by combining extracts from vegetative and conjugating cells. Increased glucanase activity occurred when walls from conjugating cells were combined with walls from sporulating cells. Studies with trypsin and proteolytic inhibitors suggest that glucanase II exists as a zymogen in conjugating cells. A temperature-sensitive mutant of S. pombe was isolated which lysed at 37°C. Glucanase activity was higher in vegetative cells held at 37°C than cells held at 25°C. Unlike the wild-type strain, this mutant contained glucanase II activity during vegetative growth and may be a regulatory mutant.  相似文献   

12.
Root hairs provide a model system to study plant cell growth, yet little is known about the polysaccharide compositions of their walls or the role of these polysaccharides in wall expansion. We report that Arabidopsis thaliana root hair walls contain a previously unidentified xyloglucan that is composed of both neutral and galacturonic acid–containing subunits, the latter containing the β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→ and/or α-l-fucosyl-(1→2)-β-d-galactosyluronic acid-(1→2)-α-d-xylosyl-(1→) side chains. Arabidopsis mutants lacking root hairs have no acidic xyloglucan. A loss-of-function mutation in At1g63450, a root hair–specific gene encoding a family GT47 glycosyltransferase, results in the synthesis of xyloglucan that lacks galacturonic acid. The root hairs of this mutant are shorter than those of the wild type. This mutant phenotype and the absence of galacturonic acid in the root xyloglucan are complemented by At1g63450. The leaf and stem cell walls of wild-type Arabidopsis contain no acidic xyloglucan. However, overexpression of At1g63450 led to the synthesis of galacturonic acid–containing xyloglucan in these tissues. We propose that At1g63450 encodes XYLOGLUCAN-SPECIFIC GALACTURONOSYLTRANSFERASE1, which catalyzes the formation of the galactosyluronic acid-(1→2)-α-d-xylopyranosyl linkage and that the acidic xyloglucan is present only in root hair cell walls. The role of the acidic xyloglucan in root hair tip growth is discussed.  相似文献   

13.
Lysis of Yeast Cell Walls: Glucanases from Bacillus circulans WL-12   总被引:7,自引:1,他引:6       下载免费PDF全文
Endo-β-(1 → 3)- and endo-β-(1 → 6)-glucanases are produced in high concentration in the culture fluid of Bacillus circulans WL-12 when grown in a mineral medium with bakers' yeast cell walls as the sole carbon source. Much lower enzyme levels were found when laminarin, pustulan, or mannitol was the substrate. The two enzyme activities were well separated during Sephadex G-100 chromatography. The endo-β-(1 → 3)-glucanase was further purified by diethylaminoethyl-cellulose and hydroxyapatite chromatography, whereas the endo-β-(1 → 6)-glucanase could be purified further by diethylamino-ethyl-cellulose and carboxymethyl cellulose chromatography. The endo-β-(1 → 3)-glucanase was specific for the β-(1 → 3)-glucosidic bond, but it did not hydrolyze laminaribiose; laminaritriose was split very slowly. β-(1 → 4)-Bonds in oat glucan in which the glucosyl moiety is substituted in the 3-position were also cleaved. The kinetics of laminarin hydrolysis (optimum pH 5.0) were complex but appeared to follow Michaelis-Menten theory, especially at the lower substrate concentrations. Glucono-δ-lactone was a noncompetitive inhibitor and Hg2+ inhibited strongly. The enzyme has no metal ion requirements or essential sulfhydryl groups. The purified β-(1 → 6)-glucanase has an optimum pH of 5.5, and its properties were studied in less detail. In contrast to the crude culture fluid, the two purified β-glucanases have only a very limited hydrolytic action on cell wall of either bakers' yeast or of Schizosaccharomyces pombe. Although our previous work had assumed that the two glucanases studied here are responsible for cell wall lysis, it now appears that the culture fluid contains in addition a specific lytic enzyme which is eliminated during the extensive purification process.  相似文献   

14.
Autolytic activities of coleoptile cell walls were measuredin developing maize seedlings. The major neutral sugar componentsof the cell wall polysaccharides were arabinose, xylose andglucose. The quantities of all these components per coleoptileincreased for 5 d after germination, suggesting that levelsare augmented by biosynthetic processes during coleoptile growth.However, cell wall preparations isolated from the coleoptilesalso revealed increasing rates of autolytic activity directedtoward each of the sugar components. This result suggests thatthe constitutive hydrolytic activities expressed by cell wallsalso increase as a function of coleoptile age. The proportionof glucose in autolysis products relative to that present inthe cell walls specifically increased with coleoptile age, whilethe ratios for arabinose and xylose decreased. Kinetic analysesof autolysis demonstrated that the reactions specific for pentosesat the early growth stage are transient events and that initiallow rates of glucan autolysis increased sharply and persistedlonger. In these experiments the products of glucan autolysiswere largely monomeric while those of the pentose-specific reactionsconsisted of both monomeric and polymeric sugars. Based on theseresults, we concluded that two distinct phases of autolyticactivities are expressed in the mediation of cell wall polysaccharidemetabolism in situ. (Received July 17, 1996; Accepted November 25, 1996)  相似文献   

15.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

16.
Cell walls prepared from the endosperm tissue of hydrated lettuce (Lactuca sativa L.) seeds undergo autohydrolysis. Release of carbohydrates is most rapid (0.4-0.6 [mu]g per endosperm) within the 1st h of incubation in buffer, but substantial autolysis is sustained for at least 10 h. Autolysis is temperature sensitive, and the optimum rate occurs at pH 5. The rate of autolysis increases markedly in the period just prior to radicle emergence. The cell-wall polysaccharide composition in micropylar and lateral endosperm regions differs significantly; the micropylar walls are rich in arabinose and glucose with substantially lower amounts of mannose. Although walls prepared from both micropylar and lateral regions undergo autolysis, micropylar walls release carbohydrates at a higher rate than lateral walls. Autolysis products elute as large polymers when subjected to size-exclusion chromatography, suggesting that endo-enzyme activity is responsible for release of fragments containing arabinose, galactose, mannose, and uronic acids. Arabinose, galactose, mannose, and glucose are also released as monomers. As a function of time, the ratio of polymers to monomers decreases, indicating that exo-enzyme activity is also present. Thermoinhibition or treatment with abscisic acid suppresses germination and reduces the rates of autolysis of walls isolated from the endosperm by about 25%. Treatments that alleviate thermoinhibition (kinetin and gibberellic acid) increase the rates of autolysis by 20 to 30% when compared to thermoinhibited controls.  相似文献   

17.
An endoglucanase was isolated from cell walls of Zea mays seedlings. Characterization of the hydrolytic activity of this glucanase using model substrates indicated a high specificity for molecules containing intramolecular (1→3),(1→4)-β-d-glucosyl sequences. Substrates with (1→4)-β-glucosyl linkages, such as carboxymethylcellulose and xyloglucan were, degraded to a limited extent by the enzyme, whereas (1→3)-β-glucans such as laminarin were not hydrolyzed. When (1→3),(1→4)-β-d-glucan from Avena endosperm was used as a model substrate a rapid decrease in vicosity was observed concomitant with the formation of a glucosyl polymer (molecular weight of 1-1.5 × 104). Activity against a water soluble (1→3),(1→4)-β-d-glucan extracted from Zea seedling cell walls revealed the same depolymerization pattern. The size of the limit products would indicate that a unique recognition site exists at regular intervals within the (1→3),(1→4)-β-d-glucan molecule. Unique oligosaccharides isolated from the Zea (1→3),(1→4)-β-d-glucan that contained blocks of (1→4) linkages and/or more than a single contiguous (1→3) linkage were hydrolyzed by the endoglucanase. The unique regions of the (1→3),(1→4)-β-d-glucan may be the recognition-hydrolytic site of the Zea endoglucanase.  相似文献   

18.
Polyclonal antibodies were raised in rabbits in response to the administration of purified exo- and endoglucanases extracted from cell walls of maize (Zea mays L. B37 × Mo17) coleoptiles. Since the antibodies formed specific conjugates when challenged with the glucanase antigens in immunoblot assays they were employed to evaluate the participation of glucanases in tissue growth. Indole-3-acetic acid induced cell elongation of abraded coleoptile segments was inhibited when the antibodies were supplied as a short term pretreatment (25-200 microgram/milliliter of serum protein). The extent of inhibition of IAA induced cell elongation was additive when endo- and exoglucanase antibodies were applied together. The results suggest that both enzymes have a role in mediating IAA-induced cell elongation. Pretreatment with exo- and endoglucanases antibodies also inhibited IAA induced degradation of noncellulosic β-d-glucans and the increased level of cellulosic polymers in maize coleoptiles. Antibodies also inhibited the expression of the autohydrolytic degradation of glucans in isolated cell walls. The extent of inhibition was dependent on the antibody concentration applied. The results support the contention that enzymatic processes mediated by exo- and endoglucanases are responsible for cell wall autolytic reactions and that these reactions are linked to the mechanism for expressing auxin induced cell elongation in maize coleoptiles.  相似文献   

19.
1. Methylation analysis of potato (Solanum tuberosum) lectin and thorn-apple (Datura stramonium) lectin confirmed previous conclusions that both glycoproteins contained high proportions of l-arabinofuranosides and lesser amounts of d-galactopyranosides. The arabinofuranosides are present in both lectins as short unbranched chains containing 1→2- and 1→3-linkages, which are known to be linked to hydroxyproline. Galactopyranosides are present as monosaccharides, which are known to be attached to serine, in potato lectin and as both the monosaccharide and the 1→3-linked disaccharide in Datura lectin. 2. Alkaline digestion of potato lectin and subsequent separation of the components by gel filtration led to the isolation of four fractions corresponding to the mono-, di-, tri- and tetra-arabinosides of hydroxyproline. The latter two fractions accounted for over 70% of the total hydroxyproline. 3. Methylation analysis was used to show that the triarabinoside contained only 1→2-linkages between sugars, but that the tetra-arabinoside contained both 1→2- and 1→3-linkages. Direct-insertion mass spectrometry of these compounds using electron impact and chemical ionization, in a comparison with other known structural patterns, was used to determine the sequences of the sugars, which were Araƒ1→2Araƒ1→2Araƒ1→Hyp and Araƒ1→3Araƒ1→2Araƒ1→2Araƒ 1→Hyp. 4. On the basis of optical rotation it had previously been suggested [Allen, Desai, Neuberger & Creeth (1978) Biochem. J. 171, 665–674] that all the arabinose of potato lectin was present as the β-l-furanoside. However, measurement of the optical rotations of the hydroxyprolyl arabinosides showed that whereas the diarabinoside had a molar rotation ([m]) value close to that predicted, the triarabinoside was more dextrorotatory and the tetra-arabinoside was less dextrorotatory than expected. Possible explanations for these findings are that, although the di- and tri-arabinosides contain exclusively β-arabinofuranosides, in the tri-arabinoside, interactions between pentose units lead to an enhanced positive rotation. The tetra-arabinoside, however, is proposed to contain a single α-arabinofuranoside residue, which is responsible for the lower than expected positive rotation. The observed rotation of the tetra-arabinoside was found to be close to the theoretical value predicted on that basis. Furthermore, the action of a specific α-arabinofuranosidase on the tetrasaccharide was to remove a single arabinose residue, presumably the terminal non-reducing sugar, and to produce a product that was indistinguishable on electrophoresis from the triarabinoside. Changes in rotation were compatible with this assumption. 5. It is concluded that the structures of the hydroxyprolyl tri- and tetra-arabinosides of potato lectin are: βAraƒ1→2βAraƒ1→2βAraƒ1→Hyp and αAraƒ1→3βAraƒ1→2βAraƒ 1→2βAraƒ1→Hyp. These are identical with compounds that have been isolated from the insoluble hydroxyproline-rich glycoproteins of plant cell walls.  相似文献   

20.
The composition of the cell wall of Fusicoccum amygdali   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The cell wall of Fusicoccum amygdali consisted of polysaccharides (85%), protein (4–6%), lipid (5%) and phosphorus (0.1%). 2. The main carbohydrate constituent was d-glucose; smaller amounts of d-glucosamine, d-galactose, d-mannose, l-rhamnose, xylose and arabinose were also identified, and 16 common amino acids were detected. 3. Chitin, which accounted for most of the cell-wall glucosamine, was isolated in an undegraded form by an enzymic method. Chitosan was not detected, but traces of glucosamine were found in alkali-soluble and water-soluble fractions. 4. Cell walls were stained dark blue by iodine and were attacked by α-amylase, with liberation of glucose, maltose and maltotriose, indicating the existence of chains of α-(1→4)-linked glucopyranose residues. 5. Glucose and gentiobiose were liberated from cell walls by the action of an exo-β-(1→3)-glucanase, giving evidence for both β-(1→3)- and β-(1→6)-glucopyranose linkages. 6. Incubation of cell walls with Helix pomatia digestive enzymes released glucose, N-acetyl-d-glucosamine and a non-diffusible fraction, containing most of the cell-wall galactose, mannose and rhamnose. Part of this fraction was released by incubating cell walls with Pronase; acid hydrolysis yielded galactose 6-phosphate and small amounts of mannose 6-phosphate and glucose 6-phosphate as well as other materials. Extracellular polysaccharides of a similar nature were isolated and may be formed by the action of lytic enzymes on the cell wall. 7. About 30% of the cell wall was resistant to the action of the H. pomatia digestive enzymes; the resistant fraction was shown to be a predominantly α-(1→3)-glucan. 8. Fractionation of the cell-wall complex with 1m-sodium hydroxide gave three principal glucan fractions: fraction BB had [α]D +236° (in 1m-sodium hydroxide) and showed two components on sedimentation analysis; fraction AA2 had [α]D −71° (in 1m-sodium hydroxide) and contained predominantly β-linkages; fraction AA1 had [α]D +40° (in 1m-sodium hydroxide) and may contain both α- and β-linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号