首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophages T7 and T3 encode DNA-dependent RNA polymerases that are 82% homologous, yet exhibit a high degree of specificity for their own promoters. A region of the RNA polymerase gene (gene 1) that is responsible for this specificity has been localized using two approaches. First, the RNA polymerase genes of recombinant T7 x T3 phage that had been generated in other laboratories in studies of phage polymerase specificity were characterized by restriction enzyme mapping. This approach localized the region that determines promoter specificity to the 3' end of the polymerase gene, corresponding to the carboxyl end of the polymerase protein distal to amino acid 623. To define more closely the region of promoter specificity, a series of hybrid T7/T3 RNA polymerase genes was constructed by in vitro manipulation of the cloned genes. The specificity of the resulting hybrid RNA polymerases in vitro and in vivo indicates that an interval of the polymerase that spans amino acids 674 to 752 (the 674 to 752 interval) contains the primary determinant of promoter preference. Within this interval, the amino acid sequences of the T3 and T7 enzymes differ at only 11 out of 79 positions. It has been shown elsewhere that specific recognition of T3 and T7 promoters depends largely upon base-pairs in the region from -10 to -12. An analysis of the preference of the hybrid RNA polymerases for synthetic T7 promoter mutants indicates that the 674 to 752 interval is involved in identifying this region of the promoter, and suggests that another domain of the polymerase (which has not yet been identified) may be involved in identifying other positions where the two consensus promoter sequences differ (most notably at position -15).  相似文献   

2.
3.
The specificity and structural simplicity of the bacteriophage T3, T7, and SP6 RNA polymerases make these enzymes particularly well suited for studies of polymerase-promoter interactions. To understand the initial recognition process between the enzyme and its promoters, DNA fragments that carry phage promoters were chemically modified by three different methods: base methylation, phosphate ethylation, and base removal. The positions at which these modifications prevented or enhanced binding by the RNA polymerases were then determined. The results indicate that specific contacts within the major groove of the promoter between positions-5 and -12 are important for phage polymerase binding. Removal of individual bases from either strand of the initiation region (-5 to +3) resulted in enhanced binding of the polymerase, suggesting that disruption of the helix in this region may play a role in stabilization of the polymerase-promoter complexes.  相似文献   

4.
5.
6.
7.
The promoter-specific binding of Escherichia coli RNA polymerase to the T7-A3 and the lacUV5 promoters at 0 degrees C was analyzed by DNase I footprinting. At 37 degrees C, the footprint from RNA polymerase bound to the A3 promoter is essentially the same as that reported by Galas, D.J., and Schmitz, A., (1978) Nucleic Acids Res. 5, 3157-3170 for the lacUV5 promoter. At 0 degrees C, the footprint for the A3 promoter is well defined but reduced in size. The principal difference between the 0 and 37 degrees C footprints is a region from -2 to +18 which is protected by polymerase at the higher but not at the lower temperature. In contrast, the 0 degree C footprint for the lacUV5 promoter differs substantially in character from the footprint for A3 at 0 degree C. The footprint is similar to the pattern of DNase I digestion of DNA bound to a surface; alternating regions of sensitive and protected DNA are spaced at intervals of about 10 base pairs. This region of DNase I-sensitive and -resistant DNA has the same boundaries as the 0 degree C footprint on T7-A3. Temperature shift experiments confirmed the sequence specificity of the RNA polymerase interaction with UV5 at 0 degree C. These results indicate that RNA polymerase binds specifically to each promoter sequence in a closed complex. The increased time and amounts of RNA polymerase required to form the 0 degree C footprint on the lacUV5 promoter indicate that it binds RNA polymerase more weakly than does the T7-A3 promoter. Therefore there is a correlation between the binding constant for closed complex formation estimated from kinetic measurements and the formation of the 0 degree C footprint. The -35 region of the promoter may be more important in establishing the 0 degree C footprint because the T7-A3 promoter is a better match to the consensus sequence. Conversely, the -10 region seems less important because lacUV5 is a perfect match to the consensus, whereas the T7-A3 promoter matches at only five out of seven positions. The 0 degree C footprints encompass both regions along with the spacer; the combination of these regions rather than an individual region may determine the character of the footprint and the magnitude of the binding constant.  相似文献   

8.
The bacteriophage T3 and T7 RNA polymerases (RNAP) are closely related, yet exhibit high specificity for their own promoter sequences. In this work the primary determinant of T7 versus T3 promoter specificity has been localized to a single amino acid residue at position 748 in the T7 RNAP. Substitution of this residue (Asn) with the corresponding residue found in T3 RNAP (Asp) results in a switch in promoter specificity, and specifically alters recognition of the base pairs (bp) at positions -11 and, possibly, -10 in the promoter. A complementary mutation in T3 RNAP (T3-D749N) results in a similar switch in promoter preference for that enzyme. The hierarchy of bp preference by the mutant and wild-type enzymes for bp at -10 and -11, and the results of previous experiments, lead to a model for specificity in which it is proposed that N748 in T7 RNAP (and D749 in T3 RNAP) make specific hydrogen bonds with bases at -11 and -10 on the non-template strand in the major groove. The specificity determining region of T7 RNAP does not appear to exhibit homology to any known sequence-dependent DNA binding motif.  相似文献   

9.
T7噬菌体启动子能被T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动转录 ,为研究两个系统转录的关键碱基 ,将合成的T7噬菌体启动子 1 1变异体与报道基因CAT基因连在一起。体内CAT和体外狭缝RNA杂交实验显示 : 1 1碱基是T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动T7启动子的关键碱基之一。  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号