首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

2.
We have examined the ability of blood-derived monocytes and macrophages isolated from a patient with alveolar rhabdomyosarcoma and hypercalcaemia, to form 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) from 25-hydroxyvitamin D3 (25(OH)D3). Adherent monocyte-macrophage cells incubated with 25(OH)D3 over the initial 2 days in culture synthesized 1.9 pmol 24,25(OH)2D3/h/incubation (representing 0.63 pmol/h/10(6) cells), whereas macrophages synthesized 1.03 and 1.15 pmol 1 alpha,25(OH)2D3/h/incubation after 1 and 4 weeks in culture respectively. In a further experiment synthesis of 1 alpha,25(OH)2D3 by long-term cultured macrophages fell from 2.25 to 0.04 pmol/h/incubation following exposure to 10 nM 1 alpha,25(OH)2D3 for 7 days, whereas 24,25(OH)2D3 synthesis was induced (0.46 pmol/h/incubation). The vitamin D3 metabolites were identified by co-chromatography with authentic 24,25(OH)2D3 or 1 alpha,25(OH)2D3 in three different high-performance liquid chromatography systems. Serum 1 alpha,25(OH)2D3 in the patient was markedly suppressed at 5 pg/ml (normal 20-50 pg/ml) indicating that raised 1 alpha,25(OH)2D3 was not the cause of the hypercalcaemia, but rather, that raised calcium may have suppressed renal 1 alpha,25(OH)2D3 synthesis. Administration of APD (3-amino-1-hydroxypropylidine-1,1-bisphosphonate) corrected the hypercalcaemia in the patient suggesting that increased bone resorption was responsible for the raised calcium. The results of this study show for the first time that immature blood derived monocyte-macrophage cells can synthesize 24,25(OH)2D3 before they mature into macrophages able to synthesize 1 alpha,25(OH)2D3.  相似文献   

3.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

4.
We have demonstrated that 1alpha,25-dihydroxyvitamin D(3)-26, 23-lactone analogs, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647, TEI-9648, respectively), inhibit HL-60 cell differentiation induced by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], but not differentiation caused by all-trans retinoic acid (D. Miura et al., 1999, J. Biol. Chem. 274, 16392). To assess whether the antagonistic actions of TEI-9647 and TEI-9648 in HL-60 cells are related to 1alpha,25(OH)(2)D(3) breakdown, we investigated their effects on catabolism of 1alpha,25(OH)(2)D(3). In HL-60 cells, the C-24 but not the C-23 side-chain oxidation pathway of 1alpha,25(OH)(2)D(3) has been reported. Here we demonstrate that 1alpha,25(OH)(2)D(3) was metabolized both to 24,25,26,27-tetranor-1alpha,23-(OH)(2)D(3) and 1alpha,25(OH)(2)D(3)-26,23-lactone; thus HL-60 cells constitutively possess both the 24- and the 23-hydroxylases. Metabolism of 1alpha, 25(OH)(2)D(3) was strongly suppressed by 10(-7) M TEI-9647 or 10(-6) M TEI-9648. 1alpha,25(OH)(2)D(3) alone slightly induced 24-hydroxylase gene expression by 8 h with full enhancement by 24-48 h; this induction was inhibited by 10(-6) M TEI-9647 and 10(-6) M TEI-9648 (86.2 and 31.9%, respectively) 24 h after treatment. However, analogs of TEI-9647 and TEI-9648 without the 25-dehydro functionality induced 24-hydroxylase gene expression. These results indicate that TEI-9647 and TEI-9648 clearly mediate their stereoselective antagonistic actions independent of their actions to block the catabolism of 1alpha,25(OH)(2)D(3). Therefore, TEI-9647 and TEI-9648 appear to be the first antagonists specific for the nuclear 1alpha,25(OH)(2)D(3) receptor-mediated genomic actions of 1alpha,25(OH)(2)D(3) in HL-60 cells.  相似文献   

5.
The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells.  相似文献   

6.
We have studied the production of interleukin 6 (IL-6) and its relation to the macrophage differentiation in murine myeloid leukemia cells (M1). As has been reported, differentiation-inducing factor (D-factor), 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3], and recombinant IL-6 similarly induced differentiation of M1 cells into macrophages. The three compounds also induced mRNA expression of IL-6 in M1 cells. M1 cells treated with D-factor or 1 alpha, 25(OH)2D3 produced biologically active IL-6, but the amounts of IL-6 secreted into culture media did not appear to be enough to induce differentiation of M1 cells. Furthermore, simultaneous addition of anti-IL-6 antibody did not suppress the differentiation of M1 cells induced by D-factor or 1 alpha, 25(OH)2D3. These results show that IL-6 production is an essential property associated with the macrophage differentiation of M1 cells, but it may not be responsible for the D-factor- and 1 alpha, 25(OH)2D3-induced differentiation.  相似文献   

7.
In order to study the effects of vitamin D metabolites on bone metabolism, clone MC3T3-E1 cells, which have retained osteoblastic activity, were cultured with various concentrations of the hormone, 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25 (OH)2D3]. A physiological concentration of 1 alpha, 25 (OH)2D3 stimulated alkaline phosphatase (ALP) activity in the cells. Other metabolites--1 alpha, 24-dihydroxyvitamin D3 [1 alpha, 24 (OH)2D3], 1 alpha-hydroxyvitamin D3 [1 alpha (OH)D3], and 24R,25-dihydroxyvitamin D3 [24R,25 (OH)2D3]--also induced increases in ALP activity in a dose-dependent fashion. However, their effective concentrations were 100 or 1,000 times greater than that of 1 alpha, 25 (OH)2D3. Hormone-induced and native ALP activities in the cells were of the same type as that found in newborn mouse calvaria; that is, they were heat-labile, L-homoarginine- and levamisole-sensitive, and L-phenylalanine-insensitive (liver-bone-kidney type). These results show that vitamin D metabolites stimulate bone formation in vitro and that they may be involved in bone formation in vivo as well.  相似文献   

8.
Monocytic differentiation-inducing activity of 26,26,26,27,27,27-hexafluoro-1 alpha,25-dihydroxyvitamin D3 [26,27-F6-1 alpha,25-(OH)2D3] was re-evaluated in human promyelocytic leukemia (HL-60) cells in serum-supplemented or serum-free culture. The order of in vitro potency for reducing nitroblue tetrazolium (NBT) was 26,27-F6-1 alpha,25-(OH)2D3 greater than 1 alpha, 25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] = 26,26,26,27,27,27-F6-1 alpha,23(S), 25-trihydroxyvitamin D3 [26,27-F6-1 alpha,23(S), 25-(OH)3D3] under serum-supplemented culture conditions, whereas the order was 1 alpha, 25-(OH)2D3 = 26,27-F6-1 alpha,25-(OH)2D3 greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 under serum-free culture conditions. This rank order for differentiation-inducing activity under serum-free culture conditions correlated well with the binding affinity of these analogs for vitamin D3 receptor of HL-60 cells. The order of relative % binding affinity for the vitamin D-binding protein in fetal calf serum was 1 alpha,25-(OH)2D3 (100%) much greater than 26,27-F6-1 alpha,25-(OH)2D3 (5.1%) greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 (less than 1%). These results suggest that serum vitamin D-binding proteins apparently modulate monocytic differentiation of HL-60 cells by 26,27-F6-1 alpha,25-(OH)2D3 under serum-supplemented culture conditions.  相似文献   

9.
The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on phospholipid metabolism was examined in clonal rat osteogenic sarcoma cells, UMR 106, of osteoblastic phenotype. Treatment of UMR 106 cells with 10(-8)M 1,25-(OH)2D3 for 48 h caused an increase in [14C]serine incorporation into phosphatidylserine (PS) and a decrease in [3H]ethanolamine, [3H]linositol, and [14C]choline incorporation into phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylcholine, respectively; the decrease in [3H]ethanolamine incorporation into PE was the largest. The total contents of phospholipids were similarly affected by 10(-8)M 1,25-(OH)2D3 treatment, suggesting that the effects of 1,25-(OH)2D3 are due largely to alterations in the synthesis of these phospholipids. The effects of 1,25-(OH)2D3 were evident at 10(-10) M 1,25-(OH)2D3, and 10(-8)M 1,25-(OH)2D3 caused a maximal stimulation of [14C]PS synthesis (167% of control) and a maximal reduction in the [3H]PE synthesis (41% of control). The [14C]PS/[3H]PE ratio increased gradually and reached a maximum after 70 h of treatment with 10(-8)M 1,25-(OH)2D3. When the cells were cultured in calcium-free medium containing 0.5 mM EGTA or when 5 microM cycloheximide was added to the medium, the effect of 1,25-(OH)2D3 on phospholipid metabolism was almost completely inhibited. Neither 25-hydroxyvitamin D3 nor 24,25-dihydroxyvitamin D3 caused significant changes in phospholipid metabolism. These results suggest that 1,25-(OH)2D3 alters phospholipid metabolism by enhancing PS synthesis through a calcium-dependent stimulation of the base exchange reaction of serine with other phospholipids and that the effect of 1,25-(OH)2D3 requires the synthesis of new proteins. Because PS is thought to be important for apatite formation and bone mineralization by binding calcium and phosphate to form calcium-PS-phosphate complexes, the present data suggest that 1,25-(OH)2D3 may stimulate bone mineralization by a direct effect on osteoblasts, stimulating PS synthesis.  相似文献   

10.
The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, on the metabolism of proteoglycans by an osteoblastic cell line MC3T3-E1 were studied. Cells metabolically labeled with [35S]sulfate and/or [3H]glucosamine synthesized large and small dermatan sulfate proteoglycans and heparan sulfate proteoglycan. The incorporation of [35S]sulfate into proteoglycans for 1 h was reduced by 1,25-(OH)2D3 in a dose-dependent manner with a maximum reduction of 40% obtained at 10(-8)M 1,25-(OH)2D3. This effect was observed for all the proteoglycans with the decrease for the large dermatan sulfate proteoglycan most prominent. Treatment with 1,25-(OH)2D3 did not influence the degree of sulfation nor the molecular size of the glycosaminoglycan chains. Thus, the change in the incorporation of [35S] sulfate reflects net change in the synthesis of proteoglycans. When cells were treated with beta-D-xyloside, 1,25-(OH)2D3 also inhibited net synthesis of dermatan sulfate glycosaminoglycan chains on this exogenous substrate suggesting that it decreases the capacity of the cells for glycosaminoglycan synthesis. The incorporation of [3H]glucosamine into hyaluronic acid was also inhibited up to 70% by 10(-8) M 1,25-(OH)2D3. Treatment with 24,25-dihydroxyvitamin D3 did not cause significant changes in the proteoglycan synthesis. Degradation of proteoglycans associated with the cell layer was enhanced by treatment with 1,25-(OH)2D3 at 10(-8) M. Proteoglycans exogenously added to the culture were also degraded with a cell-mediated process which was stimulated by treatment with 10(-8) M 1,25-(OH)2D3. These results demonstrate that 1,25-(OH)2D3 reduces the synthesis and stimulates the degradation of proteoglycans in osteoblastic cells in culture.  相似文献   

11.
The active metabolite of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), inhibited morphologic and enzymatic expression during differentiation of preadipocyte to adipocyte. In the presence of approximately 6.4-20 X 10(-10) M 1,25(OH)2D3, the triacylglycerol accumulation was only 50% of that of fully differentiated control cells. High-affinity binding sites for 1,25-dihydroxyvitamin D3 were detected in two preadipose cell lines. The 1,25(OH)2D3 binding component sediments at 3.3 S in 4-24% (w/v) sucrose gradients prepared in hypertonic buffer. Binding assay revealed that Nmax was 70 fmol/mg protein and 90 fmol/mg protein, and Kd value was 170 pM and 37 pM in cell lines ST 13 and 3T3 L1, respectively. We also found that differentiated adipocytes did not contain specific receptors for 1,25(OH)2D3. 1,25(OH)2D3, 1(OH)D3, 24,25(OH)2D3, and 24(OH)D3 all suppressed differentiation of preadipocytes to adipocytes, and the dose required closely reflected the affinities of the various metabolites and the synthetic derivative for 1,25(OH)2D3 receptor. It is suggested that the action of vitamin D3 on preadipocyte differentiation may result from a receptor-mediated event.  相似文献   

12.
Vitamin D and its derivatives (deltanoids) are potent regulators of cell proliferation and differentiation. Targeted production of proteolytic enzymes like serine proteases and metalloproteinases is an important part of the invasive process of cancer cells. Treatment with 1 alpha25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] decreases the invasive properties of breast carcinoma cells. Here we have analyzed the effects of 1alpha,25(OH)2D3 and its synthetic analogues on the secretion and cell surface association of the components of the plasminogen activator (PA) system and on the secretion of certain matrix metalloproteinases (MMPs) and their inhibitors in MDA-MB-231 breast carcinoma cells. Deltanoids were able to decrease the secretion of urokinase PA and tissue-type PA activity in a dose-dependent manner and to increase PA inhibitor 1 secretion, leading to reduced total PA activity. CB1093 was the most potent analogue, effective at concentrations several logarithms lower than 1alpha,25(OH)2D3. Transient transfection of different urokinase PA promoter reporter constructs to HT-1080 fibrosarcoma indicator cells indicated that vitamin D-responsive sequences were located between nucleotides -2350 and -1870 in the 5' region of the promoter. Treatment of MDA-MB-231 cells with 1alpha,25(OH)2D3 or other deltanoids also resulted in decreased MMP-9 levels in association with increased tissue inhibitor of MMP 1 activity. Membrane-type 1-MMP expression or proteolytic processing were not appreciably affected by deltanoids. Vitamin D and its analogues caused a decrease in Matrigel invasion assays of MDA-MB-231 cells. Cancer cell invasion is associated with coordinated secretion of proteolytic enzymes and their inhibitors. Vitamin D and its derivatives can evidently influence invasive processes by two means: (a) decreasing the expression and activity of cell invasion-associated serine proteases and metalloproteinases; and (b) inducing their inhibitors.  相似文献   

13.
Synthesis of type I and III collagens has been examined in MG-63 human osteosarcoma cells after treatment with the steroid hormone, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Analysis of total [3H]proline-labeled proteins and pepsin-derived collagens revealed that 1,25-(OH)2D3 selectively stimulated synthesis of alpha 1I and alpha 2I components of type I collagen after 6-12 h. Consistent with previous reports (Franceschi, R. T., Linson, C. J., Peter, T. C., and Romano, P. R. (1987) J. Biol. Chem. 262, 4165-4171), parallel increases in fibronectin synthesis were also observed. Hormonal effects were maximal (2- to 2.5-fold versus controls) after 24 h and persisted for at least 48 h. In contrast, synthesis of the alpha 1III component of type III collagen was not appreciably affected by hormone treatment. Of several vitamin D metabolites (1,25-(OH)2D3, 25-dihydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) tested for activity in stimulating type I collagen synthesis, 1,25-(OH)2D3 was found to be the most active. Analysis of collagen mRNA abundance by Northern blot hybridization indicated that both types I and III procollagen mRNAs were increased 4-fold after a 24-h exposure to 1,25-(OH)2D3. Pro alpha 1I mRNA remained elevated through the 48-h time point while pro alpha 2I and pro alpha 1III mRNAs returned to control values. These results indicate that the regulation of collagen synthesis by 1,25-(OH)2D3 is complex and may involve changes in translational efficiency as well as mRNA abundance. 1,25-(OH)2D3 also caused at least a 20-fold increase in levels of the bone-specific calcium-binding protein, osteocalcin. These results are consistent with the hypothesis that 1,25-(OH)2D3 is stimulating partial differentiation to the osteoblast phenotype in MG-63 cells.  相似文献   

14.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

15.
The results of our present study indicate that 1 alpha, 25-dihydroxyvitamin D3[1 alpha, 25(OH)2D3] directly induces fusion of mouse alveolar macrophages without any participation of T-lymphocytes by a mechanism involving RNA and protein synthesis but not DNA synthesis. We have reported that 1 alpha, 25(OH)2D3 induces fusion of alveolar macrophages by a direct mechanism and by a spleen cell-mediated indirect mechanism [(1983) Proc. Natl. Acad. Sci. USA 80, 5583-5587]. Alveolar macrophages pretreated with or without anti-Thy 1.2 antibody and complement fused similarly when they were incubated with 1 alpha, 25(OH)2D3. The vitamin suppressed DNA synthesis, but it significantly enhanced RNA and protein synthesis. The 1 alpha, 25(OH)2D3-induced fusion was blocked by adding actinomycin D or cycloheximide, but not by hydroxyurea.  相似文献   

16.
Responses of cultured cartilage cells to metabolites of vitamin D3 were studied. Cells were obtained from the epiphyseal growth plate of rachitic chicks and were exposed to physiological and pharmacological concentrations of three metabolites of vitamin D3, 25 hydroxyvitamin D3 (25(OH)D3), 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). 1,25(OH)2D3 was found to reduce L-[U-14C]leucine incorporation into proteins and Na2 35SO4 incorporation into proteoglycans. The synthesis of 24,25(OH)2D3 from 25(OH)D3 was stimulated upon addition of 1,25(OH)2D3 to the cultures. Physiological concentrations of 24,25(OH)2D3 stimulated protein and proteoglycan synthesis. These findings support the notion that vitamin D3, through its active dihydroxylated metabolites, is directly involved in cartilage cells metabolism and healing of rickets.  相似文献   

17.
18.
The hormone 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)(2)D) inhibits growth and induces differentiation of prostate cells. The enzyme responsible for 1alpha,25(OH)(2)D synthesis, 25-hydroxyvitamin D (25(OH)D)-1alpha-hydroxylase (1alpha-OHase), has been demonstrated in human prostate cells. We compared the levels of 1alpha-OHase activity in prostate cancer cell lines, LNCaP, DU145 and PC-3 and in primary cultures of normal, cancerous and benign prostatic hyperplasia (BPH) prostate cells. We observed a marked decrease in 1alpha-OHase activity in prostate cancer cells, including an undetectable level of activity in LNCaP cells. Transient or stable transfection of 1alpha-OHase cDNA into LNCaP cells increased 1alpha-OHase activity from undetectable to 4.95pmole/mg+/-0.69pmole/mg and 5.8pmole/mg+/-0.7pmole/mg protein per hour, respectively. In response to 25(OH)D, the prohormone of 1alpha,25(OH)(2)D, the transfected LNCaP cells showed a significant inhibition of 3H-thymidine incorporation (37%+/-6% and 56%+/-4% at 10(-8)M for transiently and stably transfected cells, respectively). These findings support an important autocrine role for 1alpha,25(OH)(2)D in the prostate and suggest that the re-introduction of the 1alpha-OHase gene to prostate cancer cells, in conjunction with the systemic administration of 25(OH)D, constitutes an endocrine form of gene therapy that may be less toxic than the systemic administration of 1alpha,25(OH)(2)D.  相似文献   

19.
(23S)-25-Dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) functions an antagonist of the 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) nuclear receptor (VDR)-mediated differentiation of human leukemia (HL-60) cells [J. Biol. Chem. 274 (1999) 16392]. We examined the effect of vitamin D antagonist, TEI-9647, on osteoclast formation induced by 1alpha,25-(OH)(2)D(3) from bone marrow cells of patients with Paget's disease. TEI-9647 itself never induced osteoclast formation even at 10(-6)M, but dose-dependently (10(-10) to 10(-6)M) inhibited osteoclast formation induced by physiologic concentrations of 1alpha,25-(OH)(2)D(3) (41 pg/ml, 10(-10)M) from bone marrow cells of patients with Paget's disease. At the same time, 10(-8)M of TEI-9647 alone did not cause 1alpha,25-(OH)(2)D(3) dependent gene expression, but almost completely suppressed TAF(II)-17, a potential coactivator of VDR and 25-hydroxyvitamin D(3)-24-hydroxylase (25-OH-D(3)-24-hydroxylase) gene expression induced by 10(-10)M 1alpha,25-(OH)(2)D(3) in bone marrow cells of patients with Paget's disease. Moreover, TEI-9647 dose-dependently inhibited bone resorption induced by 10(-9)M 1alpha,25-(OH)(2)D(3) by osteoclasts produced by RANKL and M-CSF treatment of measles virus nucleocapsid gene transduced bone marrow cells. These results suggest that TEI-9647 acts directly on osteoclast precursors and osteoclasts, and that TEI-9647 may be a novel agent to suppress the excessive bone resorption and osteoclast formation in patients with Paget's disease.  相似文献   

20.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号