首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vesicular stomatitis virus (VSV)-specific messenger ribonucleic acid (mRNA) species contain sequences of adenylate-rich RNA which are more heterogeneous in their migration through sodium dodecyl sulfate-polyacrylamide gels than the corresponding fractions from HeLa cell mRNA. VSV virion RNA contains no adenylaterich sequences. The possible role of such sequences in the mRNA species of a cytoplasmically replicating virus is discussed.  相似文献   

2.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

3.
4.
Model for Vesicular Stomatitis Virus   总被引:4,自引:18,他引:4       下载免费PDF全文
Vesicular stomatitis virus contains single-stranded ribonucleic acid of molecular weight 3.6 x 10(6) and three major proteins with molecular weights of 75 x 10(3), 57 x 10(3), and 32.5 x 10(3). The proteins have been shown to be subunits of the surface projections, ribonucleoprotein, and matrix protein, respectively. From these values and from estimates of the proportions of the individual proteins, it has been calculated that the virus has approximately 500 surface projections, 1,100 protein units on the ribonucleoprotein strand, and 1,600 matrix protein units. Possible models of the virus are proposed in which the proteins are interrelated.  相似文献   

5.
The identity of the glycoprotein of vesicular stomatitis virus (VSV) as the spike protein has been confirmed by the removal of the spikes with a protease from Streptomyces griseus, leaving bullet-shaped particles bounded by a smooth membrane. This treatment removes the glycoprotein but does not affect the other virion proteins, apparently because they are protected from the enzyme by the lipids in the viral membrane. The proteins of phenotypically mixed, bullet-shaped virions produced by cells mixedly infected with VSV and the parainfluenza virus simian virus 5 (SV5) have been analyzed by polyacrylamide gel electrophoresis. These virions contain all the VSV proteins plus the two SV5 spike proteins, both of which are glycoproteins. The finding of the SV5 spike glycoproteins on virions with the typical morphology of VSV indicates that there is not a stringent requirement that only the VSV glycoprotein can be used to form the bullet-shaped virion. On the other hand, the SV5 nucleocapsid protein and the major non-spike protein of the SV5 envelope were not detected in the phenotypically mixed virions, and this suggests that a specific interaction between the VSV nucleocapsid and regions of the cell membrane which contain the nonglycosylated VSV envelope protein is necessary for assembly of the bullet-shaped virion.  相似文献   

6.
Treatment of suspensions of vesicular stomatitis virus with Tween-ether results in a rapid and considerable loss of infectivity (ca. 4 logs in 2 min), but the residual infectivity is comparatively stable to further treatment with ether. The infectivity remaining after the short exposure to Tween-ether is not due to virus for the following reasons. (i) It is much less infective for tissue cultures than for mice, whereas the intact virion is equally infective for both hosts. (ii) The residual infectivity is much less stable than virus infectivity in both sucrose and tartrate gradients. (iii) Virus immune serum does not neutralize its activity. (iv) The infectivity is associated with material which sediments further in sucrose gradients and has a greater buoyant density in tartrate gradients than the virion. Experiments with (32)P-labeled virion showed that the infective substructure contains ribonucleic acid with the same sedimentation characteristics as that extracted from the virion. Electron microscopy shows that the infective component has the same overall bullet-like structure as the virion but lacks the outer envelope and fringe structure.  相似文献   

7.
Polyadenylation of Vesicular Stomatitis Virus mRNA   总被引:10,自引:8,他引:2  
  相似文献   

8.
Carbohydrate Composition of Vesicular Stomatitis Virus   总被引:4,自引:11,他引:4       下载免费PDF全文
Analysis by gas-liquid chromatography of the trimethylsilylated sugar residues of purified vesicular stomatitis virus grown in L cells or chick embryo cells revealed the presence in the whole virion of four hexoses (glucose, galactose, mannose, and fucose), two hexosamines (glucosamine and galactosamine), and 34 to 40% neuraminic acid. The isolated viral glycoprotein was devoid of galactosamine and fucose, both of which sugars were present in whole virions presumably as part of the membrane glycolipids.  相似文献   

9.
When mouse L cells are infected for 22 hr with vesicular stomatitis virus (VSV), a ribonucleic acid-containing enveloped virus, greater than 70% of the major histocompatibility antigen (H-2), is no longer detectable by the method of inhibition of immune cytolysis. Infected cells prelabeled with (14)C-glucosamine also show a correspondingly greater loss of trichloroacetic acid-insoluble radioactivity than uninfected cells. The loss of H-2 antigenic activity is not due to the viral inhibition of host cell protein synthesis since cells cultured for 18 hr in the presence of cycloheximide have the same amount of H-2 activity as untreated controls. Also, cells infected with encephalomyocarditis virus, a picornavirus, show no loss of H-2 activity at a time when host cell protein synthesis is completely inhibited. VSV structural proteins associated in vitro with uninfected L-cell plasma membranes do not render H-2 sites inaccessible to the assay. Although antibodies may not combine with all the H-2 antigenic sites on the plasma membrane, anti-H-2 serum reacted with L cells before infection does not prevent a normal infection with VSV. H-2 activity can be detected in virus samples purified from the medium of infected L cells; this virus purified after being mixed with L-cell homogenates shows greater H-2 activity than virus purified after being mixed with HeLa cell homogenates. However, VSV made in HeLa cells shows no H-2 activity when mixed with L-cell homogenates.  相似文献   

10.
Stocks of vesicular stomatitis virus free of defective interfering particles were produced by serial clonal isolation. High-multiplicity infections with these stocks led to no interference or formation of defective interfering particles. Defective interfering particles were generated by three successive passages at high multiplicity.  相似文献   

11.
The cytoplasmic sites of synthesis in L cells of the protein and ribonucleic acid species of vesicular stomatitis virus were studied by polyacrylamide gel electrophoresis after fractionation of membrane and other cytoplasmic components by the Caliguiri-Tamm technique. The viral spike protein (glycoprotein G) was found primarily associated with a smooth membrane fraction which is rich in plasma membrane; the G protein was also present in fractions containing rough endoplasmic reticulum. The nonglycosylated envelope protein S (also called M) was found in the smooth membrane fractions but was more abundant in endoplasmic reticulum-enriched fractions. Longer labeling resulted in detection of nucleoprotein N, as well as other minor nucleocapsid proteins L and NS1, in the cellular membrane fractions. The N protein appeared to be made in membrane-free cytoplasm along with progeny ribonucleic acid and later became associated with membrane containing G and S viral proteins.  相似文献   

12.
The requirement of the presence of a nucleus for the replication of vesicular stomatitis virus and influenza virus has been examined by following the growth and development of these viruses in enucleate BS-C-1 cells. Vesicular stomatitis virus replicates normally in enucleate cells with the rate of production of infectious virus, the amount of virus-specific protein synthesis, and the type of proteins produced being essentially the same in nucleate and enucleate cells. Influenza virus does not replicate in enucleate cells, no virus gene products can be detected, and there is no inhibition of cellular protein synthesis.  相似文献   

13.
Morphogenesis of the Nucleoprotein of Vesicular Stomatitis Virus   总被引:1,自引:4,他引:1       下载免费PDF全文
Accumulation of the nucleoprotein of vesicular stomatitis virus (VSV) in the cytoplasm of BHK-21 cells and in two of four human cell lines was demonstrated. Appearance and progression of the nucleoprotein inclusions paralleled development of virus-specific immunofluorescence and production of virus progeny. The inclusions appeared early as discrete foci of filamentous material which eventually increased in size to form large masses which replaced normal cytoplasmic constituents. The filamentous strands were found in close proximity to budding virions. The inclusion material was extracted from infected cells and purified in cesium chloride gradients. The isolated filaments resembled the ribonucleoprotein isolated from purified virions. They incorporated (3)H-uridine, exhibited virus-specific complement-fixing activity, had a buoyant density of 1.32 g/cm(3), and appeared as single wavy strands the width of which varied from 2.5 to 8.5 nm, depending on the angle of viewing.  相似文献   

14.
15.
Twenty-four chemical disinfectants considered to be viricidal were tested. Ten disinfectants were not viricidal for vesicular stomatitis virus within 10 min at 20 C when an LD(50) titer of 10(8.5) virus units per 0.1 ml were to be inactivated. Quantitative inactivation experiments were done with acid, alkaline, and a substituted phenolic disinfectant to determine the kinetics of the virus inactivation. Substituted phenolic disinfectants, halogens, and cresylic and hydrochloric acids were viricidal. Basic compounds such as lye and sodium metasilicate were not viricidal.  相似文献   

16.
17.
Infection of chicken embryo cells with vesicular stomatitis (VS) virus resulted in variable production of three classes of intracellular viral ribonucleocapsids with sedimentation coefficients of approximately 140S, 110S, and 80S, as well as three corresponding classes of released virions designated B, LT, and T. Intracellular nucleocapsids of each class contained three proteins of which the major N protein was firmly bound, and the minor L and NS1 proteins were readily dissociated with 0.5 m NaCl. The ribonucleic acid (RNA) species extracted from B, LT, and T virions, and from corresponding intracellular nucleocapsids, contained RNA species with approximate molecular weights of 3.2 x 10(6), 2.0 x 10(6), and 10(6), respectively, as determined by polyacrylamide gel electrophoresis. These values are roughly equivalent to sedimentation coefficients of 42S, 28S, and 23S for each of the virion and nucleocapsid RNA species. Cells infected at high multiplicity with undiluted passage VS virus gave rise primarily to virions and nucleocapsids containing 23S RNA, whereas cells productively infected with purified B virions produced predominantly B and LT virions and nucleocapsids. At late stages in the productive cycle of infection, more virions containing 42S RNA were produced, but the intracellular pool of nucleocapsids containing 28S and 23S RNA remained relatively constant. Additional studies by more refined techniques are required to test the hypothesis that nucleocapsids containing 28S and 23S RNA are precursors of the 42S RNA in infectious VS-B virions and that production of defective T and LT virions results from failure of ligation of the RNA precursors.  相似文献   

18.
The major inducible 70-kDa heat shock protein (hsp70) protects against measles virus (MeV) neurovirulence in the mouse that is caused by a cell-associated noncytolytic neuronal infection. Protection is type I interferon (IFN) dependent, and we have established a novel axis of antiviral immunity in which hsp70 is released from virus-infected neurons to induce IFN-β in macrophages. The present work used vesicular stomatitis virus (VSV) to establish the relevance of hsp70-dependent antiviral immunity to fulminant cytopathic neuronal infections. In vitro, hsp70 that was constitutively expressed in mouse neuronal cells caused a modest increase in VSV replication. Infection induced an early extracellular release of hsp70 from viable cells, and the release was progressive, increasing with virus-induced apoptosis and cell lysis. The impact of this VSV-hsp70 interaction on neurovirulence was established in weanling male hsp70 transgenic and nontransgenic mice. Constitutive expression of hsp70 in neurons of transgenic mice enhanced viral clearance from brain and reduced mortality, and it was correlated with enhanced expression of type I IFN mRNA. Nontransgenic mice were also protected against neurovirulence and expressed increased type I IFN mRNA in brain when hsp70 was expressed by a recombinant VSV (rVSV-hsp70), indicating that hsp70 in the virus-infected cell is sufficient for host protection. In vitro data confirmed extracellular release of hsp70 from cells infected with rVSV-hsp70 and also showed that viral replication is not enhanced when hsp70 is expressed in this manner, suggesting that hsp70-mediated protection in vivo is not dependent on stimulatory effects of hsp70 on virus gene expression.  相似文献   

19.
A ribonucleic acid (RNA)-dependent RNA polymerase has been demonstrated in Kern Canyon virus (KCV) particles. The RNA product of the KCV polymerase hybridizes to KCV viral RNA. The properties of this viral enzyme have been characterized and compared with those of vesicular stomatitis virus (VSV). RNA polymerases from both viruses require similar conditions of temperature, pH, and detergent and magnesium concentrations for maximal synthesis of RNA. The RNA polymerase contained in the virion of KCV was more dependent on the presence of a sulfhydryl agent than was the VSV enzyme. Under optimal conditions, the specific activity of the VSV polymerase is about twenty-five times as great as that of KCV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号