首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus, and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos. At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

2.
At refrigeration temperature, mouse embryos can retain their developmental ability for a couple of days. Previous research reports have focused on the effect of cool temperature on the development of 2-cell stage embryos, morulae or blastocysts and determined that the embryo still has the ability to produce offspring after about 48 h storage at refrigeration temperature. Here we examined whether refrigeration temperature affects the development of the eight-cell stage and if the stored eight-cell stage embryo can still be used as a host embryo for ES cell injection. Our results show that eight-cell stage embryos can develop into blastocysts and yield pups after cold storage for 24 and 48 h. After ES cell injection, stored eight-cell stage embryos can support ES cells developing to F0 pups. In summary, cool storage can preserve the developmental ability of eight-cell stage embryos for at least 48 h, allowing transportation of the embryos at refrigeration temperature between different labs and their subsequent use as host embryos for ES cell injection.  相似文献   

3.
Production of cloned laboratory animals is helpful in the establishment of medical models. In this study, we examined to produce reconstituted embryos derived from somatic cell nuclei, and to establish embryonic stem (ES) cell lines from the embryo in rabbits. Metaphase II (M-II) oocytes from superovulated rabbit were used as nuclear recipients. Nuclear donor cells were fibroblasts collected from a Dutch Beleted rabbit. The M-II chromosome and the 1st polar body were aspirated, and a fibroblast was inserted into the perivitelline space of the enucleated oocyte. The pairs were electrofused for cell membrane fusion using a cell fusion apparatus and reconstituted embryos were produced. The embryos were activated and cultured in modified HTF medium and DMEM. The embryos developed to the blastocyst stage were removed their zona pellucida, and they were cultured on the feeder cell layer. As a result of having observed development of reconstituted embryos, 21.2% of the embryos were developed to the blastocyst stage. In the embryos cultured on the feeder cells, the adhesion on feeder cells was observed. We obtained inner cell mass (ICM) colony derived from reconstituted embryos At present, we are investigating to establish the ES cell lines derived from the embryos reconstituted by nuclear transfer.  相似文献   

4.
Fennel JA 《Bioethics》2008,22(2):84-91
Recent developments allow for the creation of human stem cells without the creation of human embryos, a process called alternate nuclear transfer ('ANT'). Pursuing this method of stem cell research makes sense for pro-lifers if arguments for the sanctity of the human embryo do not apply to ANT. However, the technology that makes ANT possible undermines the erstwhile technical barrier between human embryos and somatic cell DNA. These advances bring home the force of hypothetical arguments about the potential of the DNA in somatic cells, showing that there is not a morally relevant difference between the potential of an embryo and the potential of the DNA in a somatic cell. Therefore, the supposed distinction between entities that are potential human life and entities that are human life does not give any support to arguments for the sanctity of the human embryo because those arguments extend value to too many entities.  相似文献   

5.
6.
7.
Fang ZF  Gai H  Huang YZ  Li SG  Chen XJ  Shi JJ  Wu L  Liu A  Xu P  Sheng HZ 《Experimental cell research》2006,312(18):3669-3682
Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.  相似文献   

8.
Cloning methods are now well described and becoming routine. Yet the frequency at which cloned offspring are produced remains below 2% irrespective of nucleus donor species or cell type. Especially in the mouse, few laboratories can make clones from adult somatic cells, and most mouse strains never succeed to produce cloned mice. On the other hand, nuclear transfer can be used to generate embryonic stem (ntES) cell lines from a patient's own somatic cells. We have shown that ntES cells can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. Several reports have already demonstrated that ntES cells can be used in regenerative medicine in order to rescue immune deficient or infertile phenotypes. However, it is unclear whether ntES cells are identical to fertilized embryonic stem (ES) cells. In general, ntES cell techniques are expected to be applicable to regenerative medicine, however, these techniques can also be used for the preservation of the genetic resources of mouse strains instead of preserving such resources in embryos, oocytes or spermatozoa. This review seeks to describe the phenotype, application, and possible abnormalities of cloned mice and ntES cell lines.  相似文献   

9.
The derivation of ES cells is poorly understood and varies in efficiency between different strains of mice. We have investigated potential differences between embryos of permissive and recalcitrant strains during diapause and ES cell derivation. We found that in diapause embryos of the recalcitrant C57BL/6 and CBA strains, the epiblast failed to expand during the primary explant phase of ES cell derivation, whereas in the permissive 129 strain, it expanded dramatically. Epiblasts from the recalcitrant strains could be expanded by reducing Erk activation. Isolation of 129 epiblasts facilitated very efficient derivation of ES cell lines in serum- and feeder-free conditions, but reduction of Erk activity was required for derivation of ES cells from isolated C57BL/6 or CBA epiblasts. The results suggest that the discrepancy in ES cell derivation efficiency is not attributable merely to variable prodifferentiative effects of the extra-embryonic lineages but also to an intrinsic variability within the epiblast to maintain pluripotency.  相似文献   

10.
We have derived putative embryonic stem (ES) cell lines from preimplantation rabbit embryos and report here their initial characterization. Two principal cell types emerged following serial passage of explanted embryos, and each has subsequently given rise to immortalized cell lines. One cell type has morphology identical to primary outgrowths of trophectoderm, is strictly feeder-cell dependent, and spontaneously forms trophectodermal vesicles at high cell density. The second type appears to represent pluripotent ES cells derived from the inner cell mass as evidenced by (1) ability to grow in an undifferentiated state on feeder layers, (2) maintenance of a predominantly normal karyotype through serial passage (over 1 year), and (3) ability to form embryoid bodies, which form terminally differentiated cell types representative of ectoderm, mesoderm, and endoderm. These ES cells may ultimately be suitable for introduction of germline mutations (via homologous recombination). The rabbit's size, reproductive capability, and well-characterized physiology make it suitable for a wide range of investigations, particularly for development of large animal models of human disease. © 1993 Wiley-Liss, Inc.  相似文献   

11.
12.
ES mice that are derived completely from embryonic stem (ES) cells can be obtained by tetraploid embryo complementation. Many neonate ES mice die because of respiratory distress, but it is not clear what contributes to the phenomenon. Using five microsatellite DNA markers, we confirmed that our ES mice were completely derived from ES cells and contained no tetraploid component. The neonatal ES mice that exhibited respiratory distress were tested for surfactant protein B (SP-B) expression by Western blotting. These mice had no SP-B expression, and even apparently healthy adult ES mice had decreased SP-B levels and aberrant SP-B phenotypes. These data suggest that the expression of SP-B protein is an important factor in the survival of ES mice to term and adulthood.  相似文献   

13.
This study was conducted to investigate the effect of recipient activation time on the chromatin structure and development of bovine nuclear transfer embryos. Serum-starved skin cells were electrofused to enucleated oocytes, activated 1-5 hr after fusion, and cultured in vitro. Some fused eggs were fixed at each time point after fusion without activation, or 3 or 7 hr after activation. Some nocodazole treated zygotes were fixed to analyze their chromosome constitutions. The proportion of eggs with a morphologically normal premature chromosome condensation (PCC) state increased 1-2 hr after fusion. Whereas eggs with elongated chromosome plate increased as activation time was prolonged to 3 hr, and 5 hr after fusion, 58.1% of eggs showed more than two scattered chromosome sets. The proportion of eggs with a single chromatin mass (40.6-56.7%) significantly increased when eggs were activated within 2.5 hr after fusion (P < 0.05). Only 23.3% of reconstituted embryos activated 5 hr after fusion formed one pronucleus-like structure (PN), whereas, 64.5-78.3% of embryos activated 1-2.5 hr after fusion formed one PN. The proportion of embryos with normal chromosome constitutions decreased as activation time was prolonged. Development rates to the blastocyst stage were higher in eggs activated within 2 hr after fusion (17.3-21.7%) compared to those of others (0-8.6%, P < 0.05). The result of the present study suggests that activation time can affect the chromatin structure and in vitro development of bovine nuclear transfer embryos.  相似文献   

14.
Recloned dogs derived from adipose stem cells of a transgenic cloned beagle   总被引:1,自引:0,他引:1  
Oh HJ  Park JE  Kim MJ  Hong SG  Ra JC  Jo JY  Kang SK  Jang G  Lee BC 《Theriogenology》2011,75(7):1221-1231
A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning.  相似文献   

15.
16.
Mice have been successfully cloned from somatic and embryonic stem (ES) cells using the "Honolulu method." In the present study, different donor oocytes and different culture conditions were compared to evaluate the developmental potential of nuclear transfer embryos reconstructed with an inbred ES cell line HM-1. Oocytes were recovered from two different F1 donors B6D2F1 (C57BL/6 x DBA/2) and B6CBAF1 (C57BL/6 x CBA). There was no effect of oocyte origin on development of cloned embryos to the morulae/blastocyst stage (B6D2F1 44.1% vs. B6CBAF1 45.0%), and the transferred embryos could develop to term. Two culture conditions were compared to show their ability to support development to the morulae/blastocyst stage of reconstructed embryos with B6D2F1 oocytes. The total cell number in the cloned blastocysts cultured in M16 with 20% oxygen was much higher than that observed in CZB with 20% oxygen. Low oxygen concentration during culture of nuclear transfer embryos in CZB medium showed no beneficial effect on pre-implantation development, no embryos developed to term after transfer to surrogate mothers. Our results demonstrated that not only B6D2F1, but B6CBAF1 oocytes, can be used for nuclear transfer. M16 medium is superior for culture of nuclear transfer embryos and low oxygen concentration with CZB medium during culture shows no benefit on development of cloned embryos.  相似文献   

17.
To solve the problem of immune incompatibility, nuclear transplantation has been envisaged as a means to produce cells or tissues for human autologous transplantation. Here we have derived embryonic stem cells by the transfer of human somatic nuclei into rabbit oocytes. The number of blastocysts that developed from the fused nuclear transfer was comparable among nuclear donors at ages of 5, 42, 52 and fi0 years, and nuclear transfer (NT) embryonic stem cells (ntES cells) were subsequently derived from each of the four age groups. These results suggest that human somatic nuclei can form ntES cells independent of the age of thedonor. The derived ntES cells are human based on karyotype, isogenicity, in situ hybridization, PCR and immunocytochemistry with probes that distinguish between the various species. The ntES ceils maintainthe capability of sustained growth in an undifferen tiated state, and form embryoid bodies, which, on furtherinduction, give rise to cell types such as neuron and muscle, as well as mixed cell populations that expressmarkers representative of all three germ layers. Thus, ntES cells derived from human somatic cells by NTto rabbit eggs retain phenotypes similar to those of conventional human ES ceils, including the ability toundergo multilineage cellular differentiation.  相似文献   

18.
The concept of regenerating diseased myocardium by implanting engineered heart tissue (EHT) is intriguing. Yet it was limited by immune rejection and difficulties to be generated at a size with contractile properties. Somatic cell nuclear transfer is proposed as a practical strategy for generating autologous histocompatible stem (nuclear transferred embryonic stem [NT‐ES]) cells to treat diseases. Nevertheless, it is controversial as NT‐ES cells may pose risks in their therapeutic application. EHT from NT‐ES cell‐derived cardiomyocytes was generated through a series of improved techniques in a self‐made mould to keep the EHTs from contraction and provide static stretch simultaneously. After 7 days of static and mechanical stretching, respectively, the EHTs were implanted to the infarcted rat heart. Four weeks after transplantation, the suitability of EHT in heart muscle repair after myocardial infarction was evaluated by histological examination, echocardiography and multielectrode array measurement. The results showed that large (thickness/diameter, 2–4 mm/10 mm) spontaneously contracting EHTs was generated successfully. The EHTs, which were derived from NT‐ES cells, inte grated and electrically coupled to host myocardium and exerted beneficial effects on the left ventricular function of infarcted rat heart. No teratoma formation was observed in the rat heart implanted with EHTs for 4 weeks. NT‐ES cells can be used as a source of seeding cells for cardiac tissue engineering. Large contractile EHT grafts can be constructed in vitro with the ability to survive after implantation and improve myocardial performance of infarcted rat hearts.  相似文献   

19.
Goat embryonic stem (ES)-like cells could be isolated from primary materials-inner cell masses (ICMs) and remain undifferentiated for eight passages in a new culture system containing mouse ES cell conditioned medium (ESCCM) and on a feeder layer of mouse embryo fibroblasts (MEFs). However, when cultured in medium without mouse ESCCM, goat ES-like cells could not survive for more than three passages. In addition, no ES-like cells could be obtained when ICMs were cultured on goat embryo fibroblasts or the primary materials-whole goat blastocysts were cultured on MEFs. Goat ES-like cells isolated from ICMs had a normal karyotype and highly expressed alkaline phosphatase. Multiple differentiation potency of the ES-like cells was confirmed by differentiation into neural cells and fibroblast-like cells in vitro. These results suggest that mouse ES cells might secrete factors playing important roles in promoting goat ES-like cells' self-renewal, moreover, the feeder layers and primary materials could also influence the successful isolation of goat ES-like cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号