首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyvalent cations as permeant probes of MIC and TRPM7 pores   总被引:11,自引:0,他引:11       下载免费PDF全文
Recent studies in Jurkat T cells and in rat basophilic leukemia cells revealed an Mg(2+)-inhibited cation (MIC) channel that has electrophysiological properties similar to TRPM7 Eyring rate model expressed exogenously in mammalian cells. Here we compare the characteristics of several polyvalent cations and Mg(2+) to block monovalent MIC current from the outside. Putrescine, spermidine, spermine, PhTX-343 (a derivative of the naturally occurring polyamine toxin philanthotoxin), and Mg(2+) each blocked in a dose- and voltage-dependent manner, indicating a blocking site within the electric field of the ion channel. Spermine and the relatively bulky PhTX-343 exhibited voltage dependence steeper than that expected for the number of charges on the molecule. Polyamines and Mg(2+) are permeant blockers, as judged by relief of block at strongly negative membrane potentials. Intracellular dialysis with spermine (300 microM) had no effect, indicating an asymmetrical pore. At the single-channel level, spermine and Mg(2+) induced flickery block of 40-pS single channels. I/V characteristics and polyamine block are similar in expressed TRPM7 and in native MIC currents, consistent with the conclusion that native MIC channels are composed of TRPM7 subunits. An Eyring rate model is developed to account for I/V characteristics and block of MIC channels by polyvalent cations from the outside.  相似文献   

2.
The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6.4 in the order of sensitivity: SK1>SK3>SK2. The inhibition increased with the transmembrane voltage. In saturating internal Ca2+, the inhibition was abolished for SK1-3 channels at negative potentials, indicating a [Ca2+]i-dependent mode of inhibition. Application of 50 microM 1-ethyl-2-benzimidazolone was able to potentiate SK3 current to the same extent as at neutral pH(i). We conclude that SK1-3 all are inhibited by low pH(i). We suggest two components of inhibition: a [Ca2+]i-dependent component, likely involving the SK beta-subunits calmodulin, and a voltage-dependent component, consistent with a pore-blocking effect. This pH(i)-dependent inhibition can be reversed pharmacologically.  相似文献   

3.
TRPM7 channel kinase is a protein highly expressed in cells of hematopoietic lineage, such as lymphocytes. Studies performed in native and heterologous expression systems have shown that TRPM7 forms nonselective cation channels functional in the plasma membrane and activated on depletion of cellular Mg(2+). In addition to internal Mg(2+), cytosolic pH and the phospholipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] are potent physiological regulators of this channel: protons inhibit, while PI(4,5)P(2) is required for TRPM7 channel activity. These channels are also inhibited from inside by other metal cations and polyamines. While the regulation of TRPM7 channels by internal metal ions, acidic pH, and PI(4,5)P(2) is voltage independent, extracellular metal cations and polyamines block voltage dependently at micromolar concentrations and appear to occupy a distinct blocking site. In the present study we investigated intracellular Mg(2+) and pH dependence of native TRPM7 currents using whole cell patch-clamp electrophysiology in human Jurkat T lymphocytes and HEK293 cells. Our main findings are 1) Mg(2+) inhibition involves not one but two separate sites of high (~10 μM) and low (~165 μM) affinity; and 2) while sharing certain characteristics with Mg(2+) inhibition, protons most likely inhibit through one inhibitory site, corresponding to the low-affinity Mg(2+) site, with an estimated IC(50) of pH 6.3. Additionally, we present data on amplitude distribution of preactivated TRPM7 currents in Jurkat T lymphocytes in the absence of prior Mg(2+) or proton depletion.  相似文献   

4.
5.
Voltage-gated K(+) channels of the Kv7 (KCNQ) family have important physiological functions in both excitable and nonexcitable tissue. The family encompasses five genes encoding the channel subunits Kv7.1-5. Kv7.1 is found in epithelial and cardiac tissue. Kv7.2-5 channels are predominantly neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger extent than Kv7.1 channels at all potentials. We demonstrate that at least 30% of these channels are inactivated at physiologically relevant potentials. The onset of inactivation is voltage dependent and occurs on the order of seconds. Both time- and voltage-dependent recovery from inactivation was investigated for Kv7.4 channels. A time constant of 1.47 +/- 0.21 s and a voltage constant of 54.9 +/- 3.4 mV were determined. It was further demonstrated that heteromeric Kv7.3/Kv7.4 channels had inactivation properties different from homomeric Kv7.4 channels. Finally, the Kv7 channel activator BMS-204352 was in contrast to retigabine found to abolish inactivation of Kv7.4. In conclusion, this work demonstrates that inactivation is a key regulatory mechanism of Kv7.4 and Kv7.5 channels.  相似文献   

6.
Transient receptor potential (TRP) channels are essential components of biological sensors that detect changes in the environment in response to a myriad of stimuli. A major difficulty in the study of TRP channels is the lack of pharmacological agents that modulate most members of the TRP superfamily. Notable exceptions are the thermoTRPs, which respond to either cold or hot temperatures and are modulated by a relatively large number of chemical agents. In the present study we demonstrate by patch clamp whole cell recordings from Schneider 2 and Drosophila photoreceptor cells that carvacrol, a known activator of the thermoTRPs, TRPV3 and TRPA1 is an inhibitor of the Drosophila TRPL channels, which belongs to the TRPC subfamily. We also show that additional activators of TRPV3, thymol, eugenol, cinnamaldehyde and menthol are all inhibitors of the TRPL channel. Furthermore, carvacrol also inhibits the mammalian TRPM7 heterologously expressed in HEK cells and ectopically expressed in a primary culture of CA3–CA1 hippocampal brain neurons. This study, thus, identifies a novel inhibitor of TRPC and TRPM channels. Our finding that the activity of the non-thermoTRPs, TRPL and TRPM7 channels is modulated by the same compound as thermoTRPs, suggests that common mechanisms of channel modulation characterize TRP channels.  相似文献   

7.
The maturation of Xenopus laevis oocytes was studied in media free of added potassium salts. Under these conditions maturation could be triggered by 1 mM Mn2+ and La3+ and, to a lesser extent, by 2–4 mM Ca2+ and Mg2+. Maturation induced by 1.5 mM Mn2+ was inhibited by K+ concentrations above 0.25 mM. Potassium was inhibitory when added up to 2 hr before germinal vesicle breakdown occurred. In potassium-free media, maturation could be induced by incubation of oocytes under mild alkaline media (pH 8.5–9). A high percentage of medium-sized oocytes (stage IV according to Dumont) was induced to mature by progesterone in the absence of potassium. Maturation of oocytes in potassium-free media was normal by the criteria of germinal vesicle breakdown, production of maturation promoting factor, vitelline membrane activation, and inhibition by known maturation inhibitors.  相似文献   

8.
TRPM2 is a Ca2+-permeable nonselective cation channel that plays important roles in oxidative stress–mediated cell death and inflammation processes. However, how TRPM2 is regulated under physiological and pathological conditions is not fully understood. Here, we report that both intracellular and extracellular protons block TRPM2 by inhibiting channel gating. We demonstrate that external protons block TRPM2 with an IC50 of pHo = 5.3, whereas internal protons inhibit TRPM2 with an IC50 of pHi = 6.7. Extracellular protons inhibit TRPM2 by decreasing single-channel conductance. We identify three titratable residues, H958, D964, and E994, at the outer vestibule of the channel pore that are responsible for pHo sensitivity. Mutations of these residues reduce single-channel conductance, decrease external Ca2+ ([Ca2+]o) affinity, and inhibit [Ca2+]o-mediated TRPM2 gating. These results support the following model: titration of H958, D964, and E994 by external protons inhibits TRPM2 gating by causing conformation change of the channel, and/or by decreasing local Ca2+ concentration at the outer vestibule, therefore reducing [Ca2+]o permeation and inhibiting [Ca2+]o-mediated TRPM2 gating. We find that intracellular protons inhibit TRPM2 by inducing channel closure without changing channel conductance. We identify that D933 located at the C terminus of the S4-S5 linker is responsible for intracellular pH sensitivity. Replacement of Asp933 by Asn933 changes the IC50 from pHi = 6.7 to pHi = 5.5. Moreover, substitution of Asp933 with various residues produces marked changes in proton sensitivity, intracellular ADP ribose/Ca2+ sensitivity, and gating profiles of TRPM2. These results indicate that D933 is not only essential for intracellular pH sensitivity, but it is also crucial for TRPM2 channel gating. Collectively, our findings provide a novel mechanism for TRPM2 modulation as well as molecular determinants for pH regulation of TRPM2. Inhibition of TRPM2 by acidic pH may represent an endogenous mechanism governing TRPM2 gating and its physiological/pathological functions.  相似文献   

9.
TRPM7, a cation channel of the transient receptor potential channel family, has been identified as a ubiquitous magnesium transporter. We here show that TRPM7 is expressed in endothelial cells isolated from the umbilical vein (HUVEC), widely used as a model of macrovascular endothelium. Quiescence and senescence do not modulate TRPM7 amounts, whereas oxidative stress generated by the addition of hydrogen peroxide increases TRPM7 levels. Moreover, high extracellular magnesium decreases the levels of TRPM7 by activating calpains, while low extracellular magnesium, known to promote endothelial dysfunction, stimulates TRPM7 accumulation partly through the action of free radicals. Indeed, the antioxidant trolox prevents TRPM7 increase by low magnesium. We also demonstrate the unique behaviour of HUVEC in responding to pharmacological and genetic inhibition of TRPM7 with an increase of cell growth and migration. Our results indicate that TRPM7 modulates endothelial behavior and that any condition leading to TRPM7 upregulation might impair endothelial function.  相似文献   

10.
11.
The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depolarizations. At TPeA concentrations < 50 microM the current decay is well fit by a single exponential over a wide voltage range. At higher concentrations a second exponential component is observed, with the fast component being dominant. The blocking and unblocking rate constants of TPeA were estimated from these data, using a three-state kinetic model, and were found to be voltage dependent. The apparent inhibition constant at 0 mV is 9.8 microM, and the blocking site is located 41 +/- 3% of the way into the membrane field from the cytoplasmic side of the channel. Raising the external Na concentration from 10 to 100 mM reduces the TPeA-modified inactivation rates, consistent with a mechanism in which external Na ions displace TPeA from its binding site within the pore. TBA (500 microM) and TPeA (20 microM) induce a use-dependent block of Na channels characterized by a progressive, reversible, decrease in current amplitude in response to trains of depolarizing pulses delivered at 1-s intervals. Tetrapropylammonium (TPrA), a related symmetrical tetra-alkylammonium (TAA), blocks Na currents but does not alter inactivation (O'Leary, M. E., and R. Horn. 1994. Journal of General Physiology. 104:507-522.) or show use dependence. Internal TPrA antagonizes both the TPeA-induced increase in the apparent inactivation rate and the use dependence, suggesting that all TAA compounds share a common binding site in the pore. A channel blocked by TBA or TPeA inactivates at nearly the normal rate, but recovers slowly from inactivation, suggesting that TBA or TPeA in the blocking site can interact directly with a cytoplasmic inactivation gate.  相似文献   

12.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

13.
Cholesterol has been shown to promote cell proliferation/migration in many cells; however the mechanism(s) have not yet been fully identified. Here we demonstrate that cholesterol increases Ca2 + entry via the TRPM7 channel, which promoted proliferation of prostate cells by inducing the activation of the AKT and/or the ERK pathway. Additionally, cholesterol mediated Ca2 + entry induced calpain activity that showed a decrease in E-cadherin expression, which together could lead to migration of prostate cancer cells. An overexpression of TRPM7 significantly facilitated cholesterol dependent Ca2 + entry, cell proliferation and tumor growth. Whereas, TRPM7 silencing or inhibition of cholesterol synthesis by statin showed a significant decrease in cholesterol-mediated activation of TRPM7, cell proliferation, and migration of prostate cancer cells. Consistent with these results, statin intake was inversely correlated with prostate cancer patients and increase in TRPM7 expression was observed in samples obtained from prostate cancer patients. Altogether, we provide evidence that cholesterol-mediated activation of TRPM7 is important for prostate cancer and have identified that TRPM7 could be essential for initiation and/or progression of prostate cancer.  相似文献   

14.
TRP (Transient Receptor Potential) cation channels of the TRPM subfamily have been found to be critically important for the regulation of Mg2+ homeostasis in both protostomes (e.g., the nematode, C. elegans, and the insect, D. melanogaster) and deuterostomes (e.g., humans). Although significant progress has been made toward understanding how the activities of these channels are regulated, there are still major gaps in our understanding of the potential regulatory roles of extensive, evolutionarily conserved, regions of these proteins. The C. elegans genes, gon-2, gtl-1 and gtl-2, encode paralogous TRP cation channel proteins that are similar in sequence and function to human TRPM6 and TRPM7. We isolated fourteen revertants of the missense mutant, gon-2(q338), and these mutations affect nine different residues within GON-2. Since eight of the nine affected residues are situated within regions that have high similarity to human TRPM1,3,6 and 7, these mutations identify sections of these channels that are potentially critical for channel regulation. We also isolated a single mutant allele of gon-2 during a screen for revertants of the Mg2+-hypersensitive phenotype of gtl-2(-) mutants. This allele of gon-2 converts a serine to phenylalanine within the highly conserved TRP domain, and is antimorphic against both gon-2(+) and gtl-1(+). Interestingly, others have reported that mutation of the corresponding residue in TRPM7 to glutamate results in deregulated channel activity.  相似文献   

15.
Single calcium dependent potassium channels from cultured rat myoballs have been studied with the patch clamp technique, and current records subjected to statistical analysis. From the dependence of the mean open state probability on the internal calcium concentration, two calcium ions are required to open the channel. The open state and closed state lifetime distributions reveal that the usual activation model is not applicable to these channels. They are consistent with a two step gating mechanism that involves both activation by calcium and blockade by a calcium-sensitive gate.  相似文献   

16.
Single calcium dependent potassium channels from cultured rat myoballs have been studied with the patch clamp technique, and current records subjected to statistical analysis. From the dependence of the mean open state probability on the internal calcium concentration, two calcium ions are required to open the channel. The open state and closed state lifetime distributions reveal that the usual activation model is not applicable to these channels. They are consistent with a two step gating mechanism that involves both activation by calcium and blockade by a calcium-sensitive gate.  相似文献   

17.
TRPM7, a novel regulator of actomyosin contractility and cell adhesion   总被引:13,自引:0,他引:13  
Actomyosin contractility regulates various cell biological processes including cytokinesis, adhesion and migration. While in lower eukaryotes, alpha-kinases control actomyosin relaxation, a similar role for mammalian alpha-kinases has yet to be established. Here, we examined whether TRPM7, a cation channel fused to an alpha-kinase, can affect actomyosin function. We demonstrate that activation of TRPM7 by bradykinin leads to a Ca(2+)- and kinase-dependent interaction with the actomyosin cytoskeleton. Moreover, TRPM7 phosphorylates the myosin IIA heavy chain. Accordingly, low overexpression of TRPM7 increases intracellular Ca2+ levels accompanied by cell spreading, adhesion and the formation of focal adhesions. Activation of TRPM7 induces the transformation of these focal adhesions into podosomes by a kinase-dependent mechanism, an effect that can be mimicked by pharmacological inhibition of myosin II. Collectively, our results demonstrate that regulation of cell adhesion by TRPM7 is the combined effect of kinase-dependent and -independent pathways on actomyosin contractility.  相似文献   

18.
Chick pineal cells maintained in dissociated cell culture express an intrinsic photosensitive circadian oscillator, but the mechanisms of phototransduction in avian pinealocytes are not fully understood. In this study, we have used inside-out patches to examine the characteristics of cyclic GMP-activated channels of chick pinealocytes in more detail, concentrating on the effects of factors known to modulate the secretion of melatonin and/or the function of circadian pacemakers. In most patches, the predominant conductance state was 19 pS in symmetrical 145 mM NaCl. But in some patches, a second cyclic GMP-activated channel with a unitary conductance of 29 pS was also present. The current flowing through cyclic GMP-activated channels was not affected by application of salines containing 1 M Ca2+ to the cytoplasmic face of the patch membrane. By contrast, application of 1 mM Ca2+ caused a partial reduction in cyclic GMP-activated current at all membrane potentials. Application of 1–5 mM Mg2+ ions caused a virtually complete blockade of current at positive membrane potentials, but caused only a small decrease in current at negative membrane potentials. No obvious differences in the gating of cyclic GMP-activated channels were observed in pH 8.2, 7.4 or 6.2 salines. Application of salines containing 100 M, 500 M, or 1 mM cyclic AMP did not cause activation of the channels, but 5 mM cyclic AMP evoked a low level of channel activity. Application of 5 mM but not 100 M cyclic AMP decreased the probability of channel activation caused by 20–100 M cyclic GMP and also increased the percentage of openings to an 11 pS subconductance state. Thus, cyclic AMP acts as a weak partial agonist. Nevertheless, the gating of these channels does not seem to be controlled directly by physiologically relevant changes in intracellular Ca2+, pH, or cyclic AMP.  相似文献   

19.
A study has been made with pig red blood cells of the activation of the sodium pump by internal and external cations. Cell Na and K concentrations were altered using a PCMBS cation loading procedure. The procedure was characterised for resultant ionic conditions, maintenance of ATP levels and fragility. The activation of the sodium pump by external K was measured in cells suspended in choline (Na-free) solutions. External Cs was used as a substitute for K and elicited lower rates of pump activity. Both the Vmax and apparent Km for 42K influx and 134Cs influx increased as internal Na concentration was raised (within the non-saturating range). Vmax/apparent Km ratios for cation influx were constant. Raising external Cs concentration exerted a similar influence on pump activation by internal Na: both the maximum pump velocity and the apparent Na-site dissociation constant (K'Na) increased. The results provide evidence for a transmembrane connection between cation binding sites on opposite faces of the membrane and are consistent with a consecutive model for the sodium pump in pig red blood cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号