首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
There is a legion of hypothetical proteins (HP) in prokaryotic and eukaryotic proteomes and the aim of this study was to describe HP in the perireticular nucleus (PN), a key structure in human brain development. Tissue from four PNs was homogenized and extracted proteins were run on two-dimensional gel electrophoresis followed by in-gel digestion and mass spectrometrical identification of proteins. Several databases were used for obtaining bioinformatic information and searching for functional and structural domains. Five spots represented HP: KIAA0423 protein (Q9Y4F4), hypothetical protein KIAA0153 (Q14166), hypothetical protein DKFZp564A2416 (Q9NTW4), hypothetical protein DKFZp564H1122 (Q9H0W9), and hypothetical protein DKFZp564D1378 (Q9H0R4). These structures were predicted to serve in cell cycle, DNA-condensation, neurogenesis, or apoptosis. The existence of formerly HP proteins in the PN of human fetal brain is shown, thus extending knowledge of the brain proteome and proposing the method used as a suitable analytical tool for searching HP.  相似文献   

2.
3.
An intrinsic membrane protein with a m.w. of 65,000 that can bind human C8 has been identified after separation of human erythrocyte membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrotransfer to nitrocellulose sheets. The protein, tentatively designated as the C8-binding protein (C8bp) could be isolated from papain-treated erythrocyte (E) membranes by phenol-water extraction and isoelectric focusing. In a functional assay, with chicken (ch) E as target cells, C8bp inhibited the lysis of ch E C5b67 intermediates by human C8 and C9, whereas the lysis by rabbit C8 and C9 was not affected. Because the decay accelerating factor (DAF) from human erythrocyte membranes also inhibits the activity of C3/C5 convertases in an homologous system, we tested whether or not a DAF activity was present in C8bp. C8bp, however, did not accelerate the decay of the classic C3 convertases. Thus, it appears that C8bp and DAF are two different factors of E membranes with a similar molecular size inhibiting different sites of the activation cascade of complement while they can function synergistically to minimize the self-inflicted damage by complement.  相似文献   

4.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

5.
All organisms except the nematode Caenorhabditis elegans have been shown to possess an import system for peroxisomal proteins containing a peroxisome targeting signal type 2 (PTS2). The currently accepted consensus sequence for this amino-terminal nonapeptide is -(R/K)(L/V/I)X(5)(H/Q)(L/A)-. Some C.elegans proteins contain putative PTS2 motifs, including the ortholog (CeMeK) of human mevalonate kinase, an enzyme known to be targeted by PTS2 to mammalian peroxisomes. We cloned the gene for CeMeK (open reading frame Y42G9A.4) and examined the subcellular localization of CeMeK and of two other proteins with putative PTS2s at their amino termini encoded by the open reading frames D1053.2 and W10G11.11. All three proteins localized to the cytosol, confirming and extending the finding that C.elegans lacks PTS2-dependent peroxisomal protein import. The putative PTS2s of the proteins encoded by D1053.2 and W10G11.11 did not function in targeting to peroxisomes in yeast or mammalian cells, suggesting that the current PTS2 consensus sequence is too broad. Analysis of available experimental data on both functional and nonfunctional PTS2s led to two re-evaluated PTS2 consensus sequences: -R(L/V/I/Q)XX(L/V/I/H)(L/S/G/A)X(H/Q)(L/A)-, describes the most common variants of PTS2, while -(R/K)(L/V/I/Q)XX(L/V/I/H/Q)(L/S/G/A/K)X(H/Q)(L/A/F)-, describes essentially all variants of PTS2. These redefined PTS2 consensus sequences will facilitate the identification of proteins of unknown cellular localization as possible peroxisomal proteins.  相似文献   

6.
Recent studies have identified cell-associated proteins that are membrane anchored by glycosyl-inositol-phospholipid structures but the biologic implications of this mode of membrane attachment are incompletely understood. Among proteins anchored in this way is the decay-accelerating factor (DAF), a complement (C) regulatory factor that functions on blood cell surfaces to prevent autologous C attack. As one approach to investigate the functional consequences of glycosyl-inositol-phospholipid-anchoring of DAF in T lymphocytes, the effects of crosslinking surface DAF molecules were compared to those of crosslinking conventionally by anchored cluster of differentiation (CD) proteins. Upon incubation with anti-DAF mAb and anti-murine IgG, DAF re-distributed to a pole of the cell with a t1/2 at 37 degrees C of 4.4 min as compared to t1/2 of 3.5 to 7 min for CD3, CD4, and CD8. Re-distribution of DAF occurred independently of CD2, CD3, CD4, or CD8. Anti-DAF immunoprecipitates of membrane extracts of cells chemically cross-linked with dithiobis(succinimidylpropionate) contained only monomeric DAF. Immunofluorescent staining demonstrated clustered actin, tubulin, and vimentin beneath the capped DAF protein. Pre-treatment of cells with colchicine or 8-azidoadenosine 3',5'-cyclic phosphate, but not lumicolchicine, resulted in reduction of the t1/2 for DAF to 1 to 2.6 min. Conversely, treatment of cells with cytochalasins B or D completely blocked DAF capping. The results indicate that, upon cross-linking, glycosyl-inositol-phospholipid-anchored DAF molecules undergo capping similar to conventionally anchored CD molecules and that DAF capping is associated with cytoskeletal reorganization.  相似文献   

7.
In yeast, two different constitutive mutants of the G protein alpha subunit have been reported. Gpa1(Q323L) cannot hydrolyze GTP and permanently activates the pheromone response pathway. Gpa1(N388D) was also proposed to lack GTPase activity, yet it has an inhibitory effect on pheromone responsiveness. We have characterized this inhibitory mutant (designated Galpha(ND)) and found that it binds GTP, interacts with G protein betagamma subunits, and exhibits full GTPase activity in vitro. Although pheromone leads to dissociation of the receptor from wild-type G protein, the same treatment promotes stable association of the receptor with Galpha(ND). We conclude that agonist binding to the receptor promotes the formation of a nondissociable complex with Galpha(ND), and in this manner prevents activation of the endogenous wild-type G protein. Dominant-negative mutants may be useful in matching specific receptors and their cognate G proteins and in determining mechanisms of G protein signaling specificity.  相似文献   

8.
Persistent stimulation of specific protein kinase pathways has been proposed as a key feature of receptor tyrosine kinases and intracellular oncoproteins that signal neuronal differentiation of rat pheochromocytoma (PC12) cells. Among the protein serine/threonine kinases identified to date, the p42/44 mitogen-activated protein (MAP) kinases have been highlighted for their potential role in signalling PC12 cell differentiation. We report here that retrovirus-mediated expression of GTPase-deficient, constitutively active forms of the heterotrimeric Gq family members, G alpha qQ209L and G alpha 16Q212L, in PC12 cells induces neuronal differentiation as indicated by neurite outgrowth and the increased expression of voltage-dependent sodium channels. Differentiation was not observed after cellular expression of GTPase-deficient forms of alpha i2 or alpha 0, indicating selectivity for the Gq family of G proteins. As predicted, overexpression of alpha qQ209L and alpha 16Q212L constitutively elevated basal phospholipase C activity approximately 10-fold in PC12 cells. Significantly, little or no p42/44 MAP kinase activity was detected in PC12 cells differentiated with alpha 16Q212L or alpha qQ209L, although these proteins were strongly activated following expression of constitutively active cRaf-1. Rather, a persistent threefold activation of the cJun NH2-terminal kinases (JNKs) was observed in PC12 cells expressing alpha qQ209L and alpha 16Q212L. This level of JNK activation was similar to that achieved with nerve growth factor, a strong inducer of PC12 cell differentiation. Supportive of a role for JNK activation in PC12 cell differentiation, retrovirus-mediated overexpression of cJun, a JNK target, in PC12 cells induced neurite outgrowth. The results define a p42/44 MAP kinase-independent mechanism for differentiation of PC12 cells and suggest that persistent activation of the JNK members of the proline-directed protein kinase family by GTPase-deficient G alpha q and G alpha 16 subunits is sufficient to induce differentiation of PC12 cells.  相似文献   

9.
Interleukin-1 beta (IL-1 beta) is a cytokine and a member of the beta-trefoil superfamily of protein structures. An interesting feature in the folding of IL-1 beta, shared with some other members of the same topological family, is the existence of a slow step in folding to the native conformation from a discrete intermediate. Wanting to probe the nature of this slow step in the folding of WT IL-1 beta (tau(1)=45 seconds), we made ten sequence variants of IL-1 beta (L10A, T9Q, T9G, C8S, C8A, N7G, N7D, L6A, R4P, and R4Q), where all mutations are located along strand 1. This strand is not protected from hydrogen exchange until late in folding. Most of the mutations showed little effect on the kinetics of folding for IL-1 beta. However, C8 is clearly involved in both the late and the early steps in folding, while sequence variants at L10 and L6 affect only late events in folding. The value of the slowest relaxation time, tau(1), which is associated with the rate of native protein formation, increased for the refolding of C8S, while C8A, L6A, and L10A showed smaller but systematic increases in the value of tau(1.)For both C8S and C8A, the value of the step associated with formation of the intermediate, tau(2), was independent of denaturant concentration. In addition, mutations in the hydrophobic core (L10A, C8A, C8S, and L6A) and, surprisingly, along the surface (T9G, T9Q, and N7G) alter the stability. The most destabilizing mutations show changes in equilibrium unfolding cooperativity, which is atypical for destabilizing mutations in IL-1 beta. Crystallographic studies indicate that mutations along strand 1 may alter the number of ordered water molecules within the core. Thus, side-chain replacement in this region can disrupt essential main-chain interactions mediated by ordered water contacts in a highly cooperative network of hydrogen bonding.  相似文献   

10.
The contribution of three single nucleotide polymorphisms (SNPs) that substitute amino acids in the X-ray repair cross-complementing gene 1 (XRCC1) protein, Arg194Trp (R194W), Arg280His (R280H), and Arg399Gln (R399Q), to the risk of various types of cancers has been extensively investigated by epidemiological researches. To investigate whether two of these polymorphisms directly influence their repair ability, we established Chinese hamster ovary (CHO) EM9 cell lines transfected with XRCC1(WT), XRCC1(R194W), or XRCC1(R280H) genes and analyzed the DNA repair ability of these cells. The EM9 cells that lack functional XRCC1 proteins exhibit severe sensitivity to methyl methanesulfonate (MMS). Introduction of the human XRCC1(WT) and XRCC1(R194W) gene to EM9 cells restored the MMS sensitivity to the same level as the AA8 cells, a parental cell line. However, introduction of the XRCC1(R280H) gene partially restored the MMS sensitivity, resulting in a 1.7- to 1.9-fold higher sensitivity to MMS compared with XRCC1(WT) and XRCC1(R194W) cells at the LD(50) value. The alkaline comet assay determined diminished base excision repair/single strand break repair (BER/SSBR) efficiency in XRCC1(R280H) cells as observed in EM9 cells. In addition, the amount of intracellular NAD(P)H decreased in XRCC1(R280H) cells after MMS treatment. Indirect immunofluorescence staining of the XRCC1 protein showed an intense increase in the signals and clear foci of XRCC1 in the nuclei of the XRCC1(WT) cells, but a faint increase in the XRCC1(R280H) cells, after MMS exposure. These results suggest that the XRCC1(R280H) variant protein is defective in its efficient localization to a damaged site in the chromosome, thereby reducing the cellular BER/SSBR efficiency.  相似文献   

11.
Species-restricted lysis of complement refers to the relative inefficiency of complement to lyse cells from the homologous species. Restriction occurs at least at the steps involving C3/C5 convertase formation and the C9 insertion phase of the complement cascade, and is presumed to be mediated by inhibitory factors in the target cell membrane. In this study, we have examined whether decay accelerating factor (DAF), a membrane protein known to modulate C3/C5 convertase activities on cell surfaces, acts as a regulatory protein in species-restricted lysis of human erythrocyte (E). The role of DAF was assessed in homologous lysis by the classic pathway, in reactive lysis, and in lytic steps requiring C8 and C9. The results indicated that DAF participated in regulating C3/C5 deposition on the surface of homologous E, but had no effect on homologous restriction in reactive lysis and in the reaction of C8 and C9 with antibody-sensitized E C1-7. Treatment of E with pronase or with dithiothreitol (DTT) abolished the restricting effect of homologous C8/C9, indicating that species-restricted lysis by C5b-9 involves membrane factor(s) sensitive to pronase and DTT.  相似文献   

12.
A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the M(r) 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of alpha, beta, or gamma groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the alpha 0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection. (iii) Disaggregation of ND10 structures is not an obligatory event essential for viral replication.  相似文献   

13.
The p21Waf1/Cip1/Sdi1 cyclin-dependent kinase inhibitor is a key regulator of cell cycle progression and has also been observed to influence the expression of genes associated with several age-related disorders. Previous work has shown that expression of p21 in tumour cells mediates an antiapoptotic and mitogenic paracrine effect, which is in contrast to the arrested state of p21-expressing cells. Here, we have employed SELDI-MS technology to characterise, at a proteomic level, factors released from HT-1080 human fibrosarcoma cells displaying inducible p21 expression. Conditioned media from induced and noninduced cells were profiled on a range of diverse ProteinChip arrays and subjected to SELDI-MS analysis. Evaluation of proteins binding onto IMAC, Q10 or CM10 surfaces led to the discovery of a number of putative p21-regulated factors. We further validated three p21-regulated proteins observed at 10.2, 11.7 and 13.4 kDa. Using Q Ceramic HyperD fractionation columns, we were able to selectively enrich for each of these three proteins. Subsequent SDS-PAGE and MS analysis of tryptic digests identified the 13.4 kDa protein as cystatin C and the 10.2 kDa protein as pro-platelet basic protein (PPBP). Judging by the apparent MW and the pI of the 11.7 kDa protein, we reasoned that it may be beta-2-microglobulin, which was confirmed by subsequent identification. Increased levels of cystatin C and beta-2-microglobulin in conditioned media from p21-expressing cells was confirmed by antibody capture experiments using anticystatin C and anti-beta-2-microglobulin antibodies on preactivated PS-20 arrays. Western blot analysis demonstrated increased expression of intracellular and extracellular cystatin C and beta-2-microglobulin in p21-expressing cells, compared to noninduced controls. Increased levels of PPBP were validated in cell lysates from p21-expressing cells. The three secreted factors that we have identified in this study, have all been shown previously to have growth modulating effects and, as such, may contribute to the observed mitogenic and anti-apoptotic paracrine activity of p21-expressing [corrected] cells.  相似文献   

14.
F9 teratocarcinoma cells have a very short duration of the cell cycle with a short G1-period typical for early embryonic cells. The cells are capable of differentiating towards parietal endoderm cells after the treatment with retinoic acid (RA) and dibutyryl-cAMP (db-cAMP). This leads to changes in the cell cycle; in particular, G1-period becomes longer, and then differentiated F9 cells leave the cycle to stay in G0-phase. It was previously reported that undifferentiated F9 cells undergo no G1 arrest of the cell cycle after DNA damage (Malashicheva et al., 2000). In the present work mechanisms of accumulation of G1-phase cells during differentiation induced by retinoic acid and db-cAMP were studied. Kinase activity of cyclin-Cdk complexes regulating the G1/S transition was analyzed. In differentiated F9 cells, the activity of cyclin-Cdk complexes, comprising Cdk4 and Cdk2 kinases and cyclins A and E, was significantly decreased. A decrease of Cdk4 kinase activity correlates with a drop of the cyclin D1 content. The amount of p21/Waf1 and p27/Kip inhibitors of the cyclin-kinase complexes increased in differentiated F9 cells. p21/Waf1 protein, which undergoes proteasomal degradation in undifferentiated F9 cells, was shown to be stable in their differentiated derivatives. Besides, in differentiated F9 cells p21/Waf1 and p27/Kip proteins can be detected with Cdk4/Cdk2-cyclin E complexes, in contrast to undifferentiated cells. Thus, we suggest that a G1/G0 block of the cell cycle taking place upon differentiation of F9 cells is likely to be caused by a decrease in cyclin-kinase activity due to stabilization and accumulation of p21/Waf1 and p27/Kip inhibitors and to their ability to associate with Cdk-cyclin complexes.  相似文献   

15.
Sun X  Xiao CL  Ge R  Yin X  Li H  Li N  Yang X  Zhu Y  He X  He QY 《Proteomics》2011,11(16):3288-3298
The aim of metalloproteomics is to identify and characterize putative metal-binding proteins and metal-binding motifs. In this study, we performed a systematical metalloproteomic analysis on Streptococcus pneumoniae through the combined use of efficient immobilized metal affinity chromatography enrichment and high-accuracy linear ion trap-Orbitrap MS to identify metal-binding proteins and metal-binding peptides. In total, 232 and 166 putative metal-binding proteins were respectively isolated by Cu- and Zn-immobilized metal affinity chromatography columns, in which 133 proteins were present in both preparations. The putative metalloproteins are mainly involved in protein, nucleotide and carbon metabolisms, oxidation and cell cycle regulation. Based on the sequence of the putative Cu- and Zn-binding peptides, putative Cu-binding motifs were identified: H(X)mH (m=0-11), C(X)(2) C, C(X)nH (n=2-4, 6, 9), H(X)iM (i=0-10) and M(X)tM (t=8 or 12), while putative Zn-binding motifs were identified as follows: H(X)mH (m=1-12), H(X)iM (i=0-12), M(X)tM (t=0, 3 and 4), C(X)nH (n=1, 2, 7, 10 and 11). Equilibrium dialysis and inductively coupled plasma-MS experiments confirmed that the artificially synthesized peptides harboring differential identified metal-binding motifs interacted directly with the metal ions. The metalloproteomic study presented here suggests that the comparably large size and diverse functions of the S. pneumoniae metalloproteome may play important roles in various biological processes and thus contribute to the bacterial pathologies.  相似文献   

16.
The site specific mutants of the thermophilic P450 (P450 175A1 or CYP175A1) were designed to introduce residues that could act as acid-base catalysts near the active site to enhance the peroxidases activity. The Leu80 in the distal heme pocket of CYP175A1 was located at a position almost equivalent to the Glu183 that is involved in stabilization of the ferryl heme intermediate in chloroperoxidase (CPO). The Leu80 residue of CYP175A1 was mutated with histidine (L80H) and glutamine (L80Q) that could potentially form hydrogen bond with hydrogen peroxide and facilitate formation and stabilization of the putative redox intermediate of the peroxidase cycle. The mutants L80H and L80Q of CYP175A1 showed higher peroxidase activity compared to that of the wild type (WT) CYP175A1 enzyme at 25 °C. The activity constants (kcat) for the L80H and L80Q mutants of CYP175A1 were higher than those of myoglobin and wild type cytochrome b562 at 25 °C. The optimum temperature for the peroxidase activity of the WT and mutants of CYP175A1 was ~ 70 °C. The rate of catalysis at temperatures above ~ 70 °C was higher for L80Q mutant of CYP175A1 compared to that of the well known natural peroxidase, horseradish peroxidase (HRP) that denatures at such high temperature. The peroxidase activities of the mutants of CYP175A1 were maximum at pH 9, unlike that of HRP which is at pH ~ 5. The results have been discussed in the light of understanding the structure-function relationship of the peroxidase properties of these thermostable heme proteins.  相似文献   

17.
The Na+-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 (∼ 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated (∼ 68-90 kDa) with only 31-65% of WT l-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered (∼ 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at ∼ 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 °C or 37 °C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.  相似文献   

18.
MicroRNA s (miRNA s) are suspected to be a contributing factor in amyotrophic lateral sclerosis (ALS ). Here, we assess the altered expression of miRNA s and the effects of miR‐124 in astrocytic differentiation in neural stem cells of ALS transgenic mice. Differentially expressed miRNA ‐positive cells (including miR‐124, miR‐181a, miR‐22, miR‐26b, miR‐34a, miR‐146a, miR‐219, miR‐21, miR‐200a, and miR‐320) were detected by in situ hybridization and qRT ‐PCR in the spinal cord and the brainstem. Our results demonstrated that miR‐124 was down‐regulated in the spinal cord and brainstem. In vitro , miR‐124 was down‐regulated in neural stem cells and up‐regulated in differentiated neural stem cells in G93A‐ superoxide dismutase 1 (SOD 1 ) mice compared with WT mice by qRT ‐PCR . Meanwhile, Sox2 and Sox9 protein levels showed converse change with miR‐124 in vivo and vitro . After over‐expression or knockdown of miR‐124 in motor neuron‐like hybrid (NSC 34) cells of mouse, Sox2 and Sox9 proteins were noticeably down‐regulated or up‐regulated, whereas Sox2 and Sox9 mRNA s remained virtually unchanged. Moreover, immunofluorescence results indicated that the number of double‐positive cells of Sox2/glial fibrillary acidic protein (GFAP) and Sox9/glial fibrillary acidic protein (GFAP) was higher in G93A‐SOD 1 mice compared with WT mice. We also found that many Sox2‐ and Sox9‐positive cells were nestin positive in G93A‐SOD 1 mice, but not in WT mice. Furthermore, differentiated neural stem cells from G93A‐SOD 1 mice generated a greater proportion of astrocytes and lower proportion of neurons than those from WT mice. MiR‐124 may play an important role in astrocytic differentiation by targeting Sox2 and Sox9 in ALS transgenic mice.

Cover Image for this issue: doi: 10.1111/jnc.14171 .
  相似文献   

19.
Epithelial cells of the glomerular capillary are the site of C5b-9 mediated injury in rat membranous nephropathy. We investigated the regulation of C activation by cultured glomerular epithelial cells (GEC). Rat and human GEC were more resistant to C injury by homologous C than heterologous C. In human GEC homologous C cytotoxicity was enhanced by antiserum to decay accelerating factor (DAF) indicating that homologous C activation was, at least in part, restricted by membrane DAF. Anti-DAF immunoprecipitated a 67-kDa protein from human glomeruli. In rat GEC, pronase and phosphatidylinositol-specific phospholipase C (which are known to inactivate human DAF) enhanced cytotoxicity by homologous C. Thus, DAF is present on human GEC in culture and in human kidney glomeruli, and a DAF-like protein is present on cultured rat GEC. These proteins regulate C activation in vitro and may play a role in controlling C activation on GEC in vivo.  相似文献   

20.
Decay-accelerating factor (DAF, CD55) is a GPI-anchored membrane protein that regulates complement activation on autologous cells. In addition to protecting host tissues from complement attack, DAF has been shown to inhibit CD4+ T cell immunity in the setting of model Ag immunization. However, whether DAF regulates natural T cell immune response during pathogenic infection is not known. We describe in this study a striking regulatory effect of DAF on the CD8+ T cell response to lymphocytic choriomeningitis virus (LCMV) infection. Compared with wild-type mice, DAF knockout (Daf-1(-/-)) mice had markedly increased expansion in the spleen of total and viral Ag-specific CD8+ T cells after acute or chronic LCMV infection. Splenocytes from LCMV-infected Daf-1(-/-) mice also displayed significantly higher killing activity than cells from wild-type mice toward viral Ag-loaded target cells, and Daf-1(-/-) mice cleared LCMV more efficiently. Importantly, deletion of the complement protein C3 or the receptor for the anaphylatoxin C5a (C5aR) from Daf-1(-/-) mice reversed the enhanced CD8+ T cell immunity phenotype. These results demonstrate that DAF is an important regulator of CD8+ T cell immunity in viral infection and that it fulfills this role by acting as a complement inhibitor to prevent virus-triggered complement activation and C5aR signaling. This mode of action of DAF contrasts with that of CD59 in viral infection and suggests that GPI-anchored membrane complement inhibitors can regulate T cell immunity to viral infection via either a complement-dependent or -independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号