首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schwabe L  Obermayer K 《Bio Systems》2002,67(1-3):239-244
Rapid adaptation is a prominent feature of biological neuronal systems. From a functional perspective the adaptation of neuronal properties, namely the input-output relation of sensory neurons, is usually interpreted as an adaptation of the sensory system to changing environments as characterized by their stimulus statistics. Here we argue that this interpretation is only applicable as long as the adaptation processes are slower than the time-scale at which the stimulus statistics change. We present a definition of optimality of a neuronal code which still captures the idea of efficient coding, but which can also explain rapid adaptation without referring to an adaptation to different sensory environments. Finally, we apply our new idea to a simple model of an orientation hypercolumn in the primary visual cortex and predict that the interactions between orientation columns should adapt at the time-scale of a single stimulus presentation.  相似文献   

2.
We examined responses of neurons of the field 21b of the cat brain cortex to presentation of moving visual stimuli of different forms. Characteristics of the responses of about 54% of the studied neurons showed that in these cases configurations of the contours of moving stimuli were to a certain extent discriminated. Most neurons selectively reacting to changes in the form of the stimulus were dark-sensitive units (they generated optimum responses to presentation of dark visual stimuli on the light background). Detailed examination of the spatial infrastructure of receptive fields (RFs) of the neurons and comparison of this structure with the selectivity of neuronal responses showed that there is no significant correlation between static organization of the RF and responses of the neuron to the movements of stimuli of different forms. We hypothesize that the dynamic infrastructure of the RF and the combined activity of functional groups of neurons, whose RFs spatially overlap the RF of the neuron under study, play a definite role in the mechanisms responsible for neuronal discrimination of the form of the visual stimulus. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 61–71, January–February, 2006.  相似文献   

3.
We tested the hypothesis that neurons in the primary visual cortex (V1) adapt selectively to contingencies in the attributes of visual stimuli. We recorded from single neurons in macaque V1 and measured the effects of adaptation either to the sum of two gratings (compound stimulus) or to the individual gratings. According to our hypothesis, there would be a component of adaptation that is specific to the compound stimulus. In a first series of experiments, the two gratings differed in orientation. One grating had optimal orientation and the other was orthogonal to it, and therefore did not activate the neuron under study. These experiments provided evidence in favour of our hypothesis. In most cells adaptation to the compound stimulus reduced responses to the compound stimulus more than it reduced responses to the optimal grating, and the responses to the compound stimulus were reduced more by adaptation to the compound stimulus than by adaptation to the individual gratings. This suggests that a component of adaptation was specific to (and caused by) the simultaneous presence of the two orientations in the compound stimulus. To test whether V1 neurons could adapt to other contingencies in the stimulus attributes, we performed a second series of experiments, in which the component gratings were parallel but differed in spatial frequency, and were both effective in activating the neuron under study. These experiments failed to reveal convincing contingent effects of adaptation, suggesting that neurons cannot adapt equally well to all types of contingency.  相似文献   

4.
Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.  相似文献   

5.
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.  相似文献   

6.
Three neuronal models of the spike initiating process were investigated with respect to their ability to show adaptation to a current step: (i) the perfect integrator model (PIM), (ii) the leaky integrator model (LIM), and (iii) the Hodgkin-Huxley (HH-) model. It was found that although each neuronal model will generate different response spike trains to a given stimulus, all responses fulfilled the criteria of a deterministic neural response (Awiszus 1988). The results show that both PIM and LIM are unable to show adaptation regardless of the choice of model parameters whereas the HH-model shows a clear rate of discharge adaptation. The reason for this adaptation lies in the fact that there are conditions for the HH-model where a step stimulus is highly effective. These conditions are investigated by means of a phase plane analysis. Consequences of these results for the explanation of neuronal adaptation and the validity of the neuronal models investigated are discussed.  相似文献   

7.
Neurons in all sensory systems have a remarkable ability to adapt their sensitivity to the statistical structure of the sensory signals to which they are tuned. In the barrel cortex, firing rate adapts to the variance of a whisker stimulus and neuronal sensitivity (gain) adjusts in inverse proportion to the stimulus standard deviation. To determine how adaptation might be transformed across the ascending lemniscal pathway, we measured the responses of single units in the first and last subcortical stages, the trigeminal ganglion (TRG) and ventral posterior medial thalamic nucleus (VPM), to controlled whisker stimulation in urethane-anesthetized rats. We probed adaptation using a filtered white noise stimulus that switched between low- and high-variance epochs. We found that the firing rate of both TRG and VPM neurons adapted to stimulus variance. By fitting the responses of each unit to a Linear-Nonlinear-Poisson model, we tested whether adaptation changed feature selectivity and/or sensitivity. We found that, whereas feature selectivity was unaffected by stimulus variance, units often exhibited a marked change in sensitivity. The extent of these sensitivity changes increased systematically along the pathway from TRG to barrel cortex. However, there was marked variability across units, especially in VPM. In sum, in the whisker system, the adaptation properties of subcortical neurons are surprisingly diverse. The significance of this diversity may be that it contributes to a rich population representation of whisker dynamics.  相似文献   

8.
Adaptation in sensory and neuronal systems usually leads to reduced responses to persistent or frequently presented stimuli. In contrast to simple fatigue, adapted neurons often retain their ability to encode changes in stimulus intensity and to respond when novel stimuli appear. We investigated how the level of adaptation of a fly visual motion-sensitive neuron affects its responses to discontinuities in the stimulus, i.e. sudden brief changes in one of the stimulus parameters (velocity, contrast, grating orientation and spatial frequency). Although the neuron''s overall response decreased gradually during ongoing motion stimulation, the response transients elicited by stimulus discontinuities were preserved or even enhanced with adaptation. Moreover, the enhanced sensitivity to velocity changes by adaptation was not restricted to a certain velocity range, but was present regardless of whether the neuron was adapted to a baseline velocity below or above its steady-state velocity optimum. Our results suggest that motion adaptation helps motion-sensitive neurons to preserve their sensitivity to novel stimuli even in the presence of strong tonic stimulation, for example during self-motion.  相似文献   

9.
The recognition of the temporal structure of sound patterns by grasshopper males was investigated in behavioural experiments. Males were tested with short (165–335 ms) song models in which the characteristic subunit pattern of syllables and pauses was modified either at the beginning or at the end of the stimuli. The highly specific responses of the animals indicate that neuronal adaptation has a substantial influence on the detection of the pauses which are essential cues for the subunit structure: pauses were less likely detected shortly after the beginning of a song model than at later positions. Even adaptation in auditory neurons that was induced by unspecific stimulation (with unmodulated noise) facilitated the processing of sound envelopes. The effects of stimulus prolongation and introduction of pauses appeared to combine linearly, similar to the effects of introducing two pauses instead of a single one. In the responses to some song models large interindividual differences were observed. Comparison across stimuli and repeated testing of a smaller number of individuals indicated a considerable consistency of behavioural preferences. However, the data yielded no clear evidence for the existence of individually distinct processing types among males, that conceivably would focus on different features of the stimuli.  相似文献   

10.
Neurons in the inferior temporal cortex (IT), an area crucially involved in visual object recognition in monkeys, show the visual response properties and anatomical/chemical nature which are distinct from those in the cortical areas that feed visual inputs to the IT. Earlier physiological studies showed that IT neurons have large receptive fields covering the center and contralateral (often bilateral) visual fields, stimulus selectivity for images of complex objects or shapes, and translation invariance of the stimulus selectivity. Recent studies have revealed new aspects of their properties such as invariant selectivity for shapes despite drastic changes in various physical attributes of stimuli, latent excitatory inputs masked by stimulus-specific GABAergic inhibition, selectivity for binocular disparity and 3-dimensional surface structures, profound effects of learning on the stimulus selectivity, and columnar clustering of neurons with similarstimulus selectivity for shapes and other object features. Another line of research using histological techniques have revealed that pyramidal neurons in the IT are larger in the size of dendritic arbors, in the number of dendritic branches and spines, and in the size and distribution of horizontal axonal arbors than those in the earlier areas, allowing them to integrate a larger population of afferents and process more diverse inputs. The concentration of several neurochemicals including those related to synaptic transmission or plasticity changes systematically towards the IT along the occipitotemporal pathway. Many of the characteristics of IT neurons parallel or explain certain aspects of visual object perception, although the behavioral relevance has yet to be addressed experimentally.  相似文献   

11.
We studied the responses of neurons of the extrastriate cortical area 21b of the cat to changes in orientation of the movements of visual stimuli within the receptive field (RF) of the neuron under study. Our experiments demonstrated that 24 of 108 cells (22%) responded differentially to a certain extent to orientation of the movements of visual stimuli. As a whole, neurons of the area 21b did not demonstrate fine tuning on the optimum angle of orientation. In many cases, neuronal responses to different orientations of the movement of visual stimulus depended significantly on specific parameters of this stimulus (its shape, dimensions, and contrast). Some directionally sensitive neurons responded to a change in orientation of the movement of visual stimuli by modification of the index of directionality. We also studied spatial organization of the RF of neurons with the presentation of stationary visual stimuli. Comparison of the neuronal responses to a change in orientation of the movements of stimuli and to presentation of stationary stimuli showed that the correlation between the orientation sensitivity of the neuron under study and the stationary functional organization of its RF was insignificant. We hypothesize that inhibitory processes and subthreshold influences from a space surrounding the RF play a special role in the formation of the neuronal responses generated in the associative visual cortical regions to visual stimulation.  相似文献   

12.
Most neurons in the primary visual cortex initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. The functional consequences of adaptation are unclear. Typically a reduction of firing rate would reduce single neuron accuracy as less spikes are available for decoding, but it has been suggested that on the population level, adaptation increases coding accuracy. This question requires careful analysis as adaptation not only changes the firing rates of neurons, but also the neural variability and correlations between neurons, which affect coding accuracy as well. We calculate the coding accuracy using a computational model that implements two forms of adaptation: spike frequency adaptation and synaptic adaptation in the form of short-term synaptic plasticity. We find that the net effect of adaptation is subtle and heterogeneous. Depending on adaptation mechanism and test stimulus, adaptation can either increase or decrease coding accuracy. We discuss the neurophysiological and psychophysical implications of the findings and relate it to published experimental data.  相似文献   

13.
14.
The quadratic integrate-and-fire (QIF) model with adaptation is commonly used as an elementary neuronal model that reproduces the main characteristics of real neurons. In this paper, we introduce a QIF neuron with a nonlinear adaptive current. This model reproduces the neuron-computational features of real neurons and is analytically tractable. It is shown that under a constant current input chaotic firing is possible. In contrast to previous study the neuron is not sinusoidally forced. We show that the spike-triggered adaptation is a key parameter to understand how chaos is generated.  相似文献   

15.

Background

A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli.

Methodology/Principal Findings

In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation.

Conclusion/Significance

The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.  相似文献   

16.
Spike-frequency adaptation is the reduction of a neuron’s firing rate to a stimulus of constant intensity. In the locust, the Lobula Giant Movement Detector (LGMD) is a visual interneuron that exhibits rapid adaptation to both current injection and visual stimuli. Here, a reduced compartmental model of the LGMD is employed to explore adaptation’s role in selectivity for stimuli whose intensity changes with time. We show that supralinearly increasing current injection stimuli are best at driving a high spike count in the response, while linearly increasing current injection stimuli (i.e., ramps) are best at attaining large firing rate changes in an adapting neuron. This result is extended with in vivo experiments showing that the LGMD’s response to translating stimuli having a supralinear velocity profile is larger than the response to constant or linearly increasing velocity translation. Furthermore, we show that the LGMD’s preference for approaching versus receding stimuli can partly be accounted for by adaptation. Finally, we show that the LGMD’s adaptation mechanism appears well tuned to minimize sensitivity for the level of basal input. This article is part of a special issue on Neuronal Dynamics of Sensory Coding.  相似文献   

17.
Inferior temporal (IT) cortex as the final stage of the ventral visual pathway is involved in visual object recognition. In our everyday life we need to recognize visual objects that are degraded by noise. Psychophysical studies have shown that the accuracy and speed of the object recognition decreases as the amount of visual noise increases. However, the neural representation of ambiguous visual objects and the underlying neural mechanisms of such changes in the behavior are not known. Here, by recording the neuronal spiking activity of macaque monkeys’ IT we explored the relationship between stimulus ambiguity and the IT neural activity. We found smaller amplitude, later onset, earlier offset and shorter duration of the response as visual ambiguity increased. All of these modulations were gradual and correlated with the level of stimulus ambiguity. We found that while category selectivity of IT neurons decreased with noise, it was preserved for a large extent of visual ambiguity. This noise tolerance for category selectivity in IT was lost at 60% noise level. Interestingly, while the response of the IT neurons to visual stimuli at 60% noise level was significantly larger than their baseline activity and full (100%) noise, it was not category selective anymore. The latter finding shows a neural representation that signals the presence of visual stimulus without signaling what it is. In general these findings, in the context of a drift diffusion model, explain the neural mechanisms of perceptual accuracy and speed changes in the process of recognizing ambiguous objects.  相似文献   

18.
In Li and Atick's [1, 2] theory of efficient stereo coding, the two eyes' signals are transformed into uncorrelated binocular summation and difference signals, and gain control is applied to the summation and differencing channels to optimize their sensitivities. In natural vision, the optimal channel sensitivities vary from moment to moment, depending on the strengths of the summation and difference signals; these channels should therefore be separately adaptable, whereby a channel's sensitivity is reduced following overexposure to adaptation stimuli that selectively stimulate that channel. This predicts a remarkable effect of binocular adaptation on perceived direction of a dichoptic motion stimulus [3]. For this stimulus, the summation and difference signals move in opposite directions, so perceived motion direction (upward or downward) should depend on which of the two binocular channels is most strongly adapted, even if the adaptation stimuli are completely static. We confirmed this prediction: a single static dichoptic adaptation stimulus presented for less than 1 s can control perceived direction of a subsequently presented dichoptic motion stimulus. This is not predicted by any current model of motion perception and suggests that the visual cortex quickly adapts to the prevailing binocular image statistics to maximize information-coding efficiency.  相似文献   

19.
Stimulus-specific adaptation (SSA) occurs when the spike rate of a neuron decreases with repetitions of the same stimulus, but recovers when a different stimulus is presented. It has been suggested that SSA in single auditory neurons may provide information to change detection mechanisms evident at other scales (e.g., mismatch negativity in the event related potential), and participate in the control of attention and the formation of auditory streams. This article presents a spiking-neuron model that accounts for SSA in terms of the convergence of depressing synapses that convey feature-specific inputs. The model is anatomically plausible, comprising just a few homogeneously connected populations, and does not require organised feature maps. The model is calibrated to match the SSA measured in the cortex of the awake rat, as reported in one study. The effect of frequency separation, deviant probability, repetition rate and duration upon SSA are investigated. With the same parameter set, the model generates responses consistent with a wide range of published data obtained in other auditory regions using other stimulus configurations, such as block, sequential and random stimuli. A new stimulus paradigm is introduced, which generalises the oddball concept to Markov chains, allowing the experimenter to vary the tone probabilities and the rate of switching independently. The model predicts greater SSA for higher rates of switching. Finally, the issue of whether rarity or novelty elicits SSA is addressed by comparing the responses of the model to deviants in the context of a sequence of a single standard or many standards. The results support the view that synaptic adaptation alone can explain almost all aspects of SSA reported to date, including its purported novelty component, and that non-trivial networks of depressing synapses can intensify this novelty response.  相似文献   

20.
The specific adaptation of neuronal responses to a repeated stimulus (Stimulus-specific adaptation, SSA), which does not fully generalize to other stimuli, provides a mechanism for emphasizing rare and potentially interesting sensory events. Previous studies have demonstrated that neurons in the auditory cortex and inferior colliculus show SSA. However, the contribution of the medial geniculate body (MGB) and its main subdivisions to SSA and detection of rare sounds remains poorly characterized. We recorded from single neurons in the MGB of anaesthetized rats while presenting a sequence composed of a rare tone presented in the context of a common tone (oddball sequences). We demonstrate that a significant percentage of neurons in MGB adapt in a stimulus-specific manner. Neurons in the medial and dorsal subdivisions showed the strongest SSA, linking this property to the non-lemniscal pathway. Some neurons in the non-lemniscal regions showed strong SSA even under extreme testing conditions (e.g., a frequency interval of 0.14 octaves combined with a stimulus onset asynchrony of 2000 ms). Some of these neurons were able to discriminate between two very close frequencies (frequency interval of 0.057 octaves), revealing evidence of hyperacuity in neurons at a subcortical level. Thus, SSA is expressed strongly in the rat auditory thalamus and contribute significantly to auditory change detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号