首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a new mammalian protein arginine N-methyltransferase, PRMT5, formerly designated Janus kinase-binding protein 1, that can catalyze the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine in a variety of proteins. A hemagglutinin peptide-tagged PRMT5 complex purified from human HeLa cells catalyzes the S-adenosyl-l-[methyl-(3)H]methionine-dependent in vitro methylation of myelin basic protein. When the radiolabeled myelin basic protein was acid-hydrolyzed to free amino acids, and the products were separated by high-resolution cation exchange chromatography, we were able to detect two tritiated species. One species co-migrated with a omega-N(G)-monomethylarginine standard, and the other co-chromatographed with a symmetric omega-N(G),N(G')-dimethylarginine standard. Upon base treatment, this second species formed methylamine, a breakdown product characteristic of symmetric omega-N(G),N(G')-dimethylarginine. Further analysis of these two species by thin layer chromatography confirmed their identification as omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine. The hemagglutinin-PRMT5 complex was also able to monomethylate and symmetrically dimethylate bovine histone H2A and a glutathione S-transferase-fibrillarin (amino acids 1-148) fusion protein (glutathione S-transferase-GAR). A mutation introduced into the S-adenosyl-l-methionine-binding motif I of a myc-tagged PRMT5 construct in COS-1 cells led to a near complete loss of observed enzymatic activity. PRMT5 is the first example of a catalytic chain for a type II protein arginine N-methyltransferase that can result in the formation of symmetric dimethylarginine residues as observed previously in myelin basic protein, Sm small nuclear ribonucleoproteins, and other polypeptides.  相似文献   

2.
The Saccharomyces cerevisiae protein Hsl7 is a regulator of the Swe1 protein kinase in cell cycle checkpoint control. Hsl7 has been previously described as a type III protein arginine methyltransferase, catalyzing the formation of ω-monomethylarginine residues on non-physiological substrates. However, we show here that Hsl7 can also display type II activity, generating symmetric dimethylarginine residues on calf thymus histone H2A. Symmetric dimethylation is only observed when enzyme and the methyl-accepting substrate were incubated for extended times. We confirmed the Hsl7-dependent formation of symmetric dimethylarginine by amino acid analysis and thin layer chromatography with wild-type and mutant recombinant enzymes expressed from both bacteria and yeast. This result is significant because no type II activity has been previously demonstrated in S. cerevisiae. We also show that Hsl7 has little or no activity on GST-GAR, a commonly used substrate for protein arginine methyltransferases, and only minimal activity on myelin basic protein. This enzyme thus may only recognize only a small subset of potential substrate proteins in yeast, in contrast to the situation with Rmt1, the major type I methyltransferase.  相似文献   

3.
4.
The yeast protein Hsl7p is a homologue of Janus kinase binding protein 1, JBP1, a newly characterized protein methyltransferase. In this report, Hsl7p also is shown to be a methyltransferase. It can be crosslinked to [(3)H]S-adenosylmethionine and exhibits in vitro protein methylation activity. Calf histones H2A and H4 and bovine myelin basic protein were methylated by Hsl7p, whereas histones H1, H2B, and H3 and bovine cytochrome c were not. We demonstrated that JBP1 can complement Saccharomyces cerevisiae with a disrupted HSL7 gene as judged by a reduction of the elongated bud phenotype, and a point mutation in the JBP1 S-adenosylmethionine consensus binding sequence eliminated all complementation by JBP1. Therefore, we conclude the yeast protein Hsl7p is a sequence and functional homologue of JBP1. These data provide evidence for an intricate link between protein methylation and macroscopic changes in yeast morphology.  相似文献   

5.
Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in Escherichia coli was initially found to generate only ω-N(G)-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the in vitro methylation products of a glutathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N(G)-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmB/D3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N(G)-monomethylarginine, not asymmetric ω-N(G),N(G)-dimethylarginine or symmetric ω-N(G),N(G')-dimethylarginine, under the conditions tested.  相似文献   

6.
We have identified a mammalian arginine N-methyltransferase, PRMT7, that can catalyze the formation of omega-NG-monomethylarginine in peptides. This protein is encoded by a gene on human chromosome 16q22.1 (human locus AK001502). We expressed a full-length human cDNA construct in Escherichia coli as a glutathione S-transferase (GST) fusion protein. We found that GST-tagged PRMT7 catalyzes the S-adenosyl-[methyl-3H]-l-methionine-dependent methylation of the synthetic peptide GGPGGRGGPGG-NH2 (R1). The radiolabeled peptide was purified by high-pressure liquid chromatography and acid hydrolyzed to free amino acids. When the hydrolyzed products were separated by high-resolution cation-exchange chromatography, we were able to detect one tritiated species which co-migrated with an omega-NG-monomethylarginine standard. Surprisingly, GST-PRMT7 was not able to catalyze the in vitro methylation of a GST-fibrillarin (amino acids 1-148) fusion protein (GST-GAR), a methyl-accepting substrate for the previously characterized PRMT1, PRMT3, PRMT4, PRMT5, and PRMT6 enzymes. Nor was it able to methylate myelin basic protein or histone H2A, in vitro substrates of PRMT5. This specificity distinguishes PRMT7 from all of the other known arginine methyltransferases. An additional unique feature of PRMT7 is that it seems to have arisen from a gene duplication event and contains two putative AdoMet-binding motifs. To see if both motifs were necessary for activity, each putative domain was expressed as a GST-fusion and tested for activity with peptides R1 and R2 (acetyl-GGRGG-NH2). These truncated proteins were enzymatically inactive, suggesting that both domains are required for functionality.  相似文献   

7.
8.
9.
10.
11.
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.  相似文献   

12.
13.
Expression of imprinted genes is restricted to a single parental allele as a result of epigenetic regulation—DNA methylation and histone modifications. Igf2/H19 is a reciprocally imprinted locus exhibiting paternal Igf2 and maternal H19 expression. Their expression is regulated by a paternally methylated imprinting control region (ICR) located between the two genes. Although the de novo DNA methyltransferases have been shown to be necessary for the establishment of ICR methylation, the mechanism by which they are targeted to the region remains unknown. We demonstrate that CTCFL/BORIS, a paralog of CTCF, is an ICR-binding protein expressed during embryonic male germ cell development, coinciding with the timing of ICR methylation. PRMT7, a protein arginine methyltransferase with which CTCFL interacts, is also expressed during embryonic testis development. Symmetrical dimethyl arginine 3 of histone H4, a modification catalyzed by PRMT7, accumulates in germ cells during this developmental period. This modified histone is also found enriched in both H19 ICR and Gtl2 differentially methylated region (DMR) chromatin of testis by chromatin immunoprecipitation (ChIP) analysis. In vitro studies demonstrate that CTCFL stimulates the histone-methyltransferase activity of PRMT7 via interactions with both histones and PRMT7. Finally, H19 ICR methylation is demonstrated by nuclear co-injection of expression vectors encoding CTCFL, PRMT7, and the de novo DNA methyltransferases, Dnmt3a, -b and -L, in Xenopus oocytes. These results suggest that CTCFL and PRMT7 may play a role in male germline imprinted gene methylation.  相似文献   

14.
15.
PRMT6 belongs to the family of Protein Arginine Methyltransferase (PRMT) enzymes that catalyze the methylation of guanidino nitrogens of arginine residues. PRMT6 has been shown to modify the tail of histone H3, but the in vivo function of PRMT6 is largely unknown. Here, we show that PRMT6 regulates cell cycle progression. Knockdown of PRMT6 expression in the human osteosarcoma cell line U2OS results in an accumulation of cells at the G2 checkpoint. Loss of PRMT6 coincides with upregulation of p21 and p27, two members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors. Gene expression and promoter analysis show that p21 and p27 are direct targets of PRMT6, which involves methylation of arginine-2 of histone H3. Our findings imply arginine methylation of histones by PRMT6 in cell cycle regulation.  相似文献   

16.
17.
Yeast disruptor of telomeric silencing-1 (DOT1) is involved in gene silencing and in the pachytene checkpoint during meiotic cell cycle. Here we show that the Dot1 protein possesses intrinsic histone methyltransferase (HMT) activity. When compared with Rmt1, another putative yeast HMT, Dot1 shows very distinct substrate specificity. While Rmt1 methylates histone H4, Dot1 targets histone H3. In contrast to Rmt1, which can only modify free histones, Dot1 activity is specific to nucleosomal substrates. This was also confirmed using native chromatin purified from yeast cells. We also demonstrate that, like its mammalian homolog PRMT1, Rmt1 specifically dimethylates an arginine residue at position 3 of histone H4 N-terminal tail. In surprising contrast, methylation by Dot1 occurs in the globular domain of nucleosomal histone H3. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis suggests that H3 lysine 79 is trimethylated by Dot1. The intrinsic nucleosomal histone H3 methyltransferase activity of Dot1 is certainly a key aspect of its function in gene silencing at telomeres, most likely by directly modulating chromatin structure and Sir protein localization. In agreement with a role in regulating localization of histone deacetylase complexes like SIR, an increase of bulk histone acetylation is detected in dot1- cells.  相似文献   

18.
Human protein arginine N-methyltransferase 6 (PRMT6) transfers methyl groups from the co-substrate S-adenosyl-L-methionine to arginine residues within proteins, forming S-adenosyl-L-homocysteine as well as omega-N(G)-monomethylarginine (MMA) and asymmetric dimethylarginine (aDMA) residues in the process. We have characterized the kinetic mechanism of recombinant His-tagged PRMT6 using a mass spectrometry method for monitoring the methylation of a series of peptides bearing a single arginine, MMA, or aDMA residue. We find that PRMT6 follows an ordered sequential mechanism in which S-adenosyl-L-methionine binds to the enzyme first and the methylated product is the first to dissociate. Furthermore, we find that the enzyme displays a preference for the monomethylated peptide substrate, exhibiting both lower K(m) and higher V(max) values than what are observed for the unmethylated peptide. This difference in substrate K(m) and V(max), as well as the lack of detectable aDMA-containing product from the unmethylated substrate, suggest a distributive rather than processive mechanism for multiple methylations of a single arginine residue. In addition, we speculate that the increased catalytic efficiency of PRMT6 for methylated substrates combined with lower K(m) values for native protein methyl acceptors may obscure this distributive mechanism to produce an apparently processive mechanism.  相似文献   

19.
The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1–20) and H4(1–20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号