共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Involvement of multidrug resistance-associated protein 2 (ABCC2/Mrp2) in biliary excretion of micafungin in rats 总被引:1,自引:0,他引:1
Abe F Ueyama J Kimata A Kato M Hayashi T Nadai M Saito H Takeyama N Noguchi H Hasegawa T 《Life sciences》2008,83(7-8):229-235
The drug transporter, multidrug resistance-associated protein 2 (ABCC2/Mrp2), is known to play important roles in excretion of various drugs. In the present study, we investigated whether Mrp2 is involved in the transport of micafungin, a newly developed antifungal agent. When Sprague-Dawley rats received an intravenous injection of micafungin (1 mg/kg) in combination with cyclosporine, the cyclosporine significantly delayed the disappearance of micafungin from plasma and decreased the systemic clearance and volume of distribution at steady-state of micafungin to 54% and 65% of the corresponding control values, respectively. When Sprague-Dawley rats received a constant-rate infusion of micafungin, cyclosporine significantly decreased the steady-state biliary clearance of micafungin (~80%). A significant decrease in the biliary clearance of micafungin (~60%) was observed in Eisai hyperbilirubinemic rats, which have a hereditary deficiency in Mrp2. The present findings at least suggest that Mrp2 is involved mainly in the hepatobiliary excretion of micafungin in rats. 相似文献
3.
4.
5.
6.
A major part of the proinflammatory activity of tumor necrosis factor (TNF) is brought about by cytosolic phospholipase A(2) (cPLA(2)) that generates arachidonic acid, the precursor for the production of leukotrienes and prostaglandins. The activation of cPLA(2) and induction of proinflammatory lipid mediators is in striking contrast to the teleologic meaning of apoptosis, which is to avoid an inflammatory reaction. In this review we highlight the evidence for a caspase-mediated cleavage and inactivation of cPLA(2), which seems to be an important mechanism by which TNF downregulates cPLA(2) activity in cells undergoing apoptosis. 相似文献
7.
Janssen P Verschueren S Rotondo A Tack J 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(7):G732-G739
We set out to determine the effect of peptide YY(3-36) (PYY(3-36)) on the gastric muscle tone in conscious rats by measuring intragastric pressure (IGP) during intragastric nutrient drink infusion. After an overnight fast, a chronically implanted gastric fistula was connected to a custom-made nutrient drink infusion system and a catheter to measure IGP. IGP was measured before and during the infusion of a nutrient drink (Nutridrink; 0.5 ml/min) until 10 ml was infused. Rats were treated with PYY(3-36) (0, 33, and 100 pmol·kg(-1)·min(-1)) in combination with a subcutaneous injection of the Y(2) receptor antagonists JNJ31020028 (10 mg/kg) or BIIE0246 (2 mg/kg). Experiments were also performed after subdiaphragmatic vagotomy and after pretreatment with 3 ml of nutrient drink (to mimic a fed state). IGP was compared as the average IGP during nutrient infusion, represented as means ± SE and compared using ANOVA. PYY(3-36) dose dependently increased the IGP during nutrient infusion (4.7 ± 0.3, 5.7 ± 0.5 and 7.3 ± 0.7 mmHg; P < 0.01) while JNJ31020028 and BIIE0246 could block this increase [4.4 ± 0.5 (P < 0.001) and 4.8 ± 0.4 (P < 0.05) mmHg, respectively]. Also in vagotomized rats, PYY(3-36) was able to significantly increase the IGP during, an effect attenuated by JNJ31020028. BIIE0246 and JNJ31020028 were not able to decrease the IGP when no PYY(3-36) was administered. PYY(3-36) increased gastric tone through an Y(2) receptor-mediated mechanism that does not involve the vagus nerve. Y(2) receptor antagonists were not able to decrease gastric tone without exogenous administration of PYY(3-36), indicating that Y(2) receptors do not play a crucial role in the determination of gastric tone in physiological conditions. 相似文献
8.
9.
10.
Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review) 总被引:1,自引:0,他引:1
Long chain fatty acids, derived either from endogenous metabolism or by nutritional sources play significant roles in important biological processes of membrane structure, production of biologically active compounds, and participation in cellular signaling processes. Recently, the structure of dietary fatty acids has become an important issue in human health because ingestion of saturated fats (containing triglycerides composed of saturated fatty acids) is considered harmful, while unsaturated fats are viewed as beneficial. It is important to note that the molecular reason for this dichotomy still remains elusive. Since fatty acids are important players in development of pathology of cardiovascular and endocrine system, understanding the key molecular targets of fatty acids, in particular those that discriminate between saturated and unsaturated fats, is much needed. Recently, insights have been gained on several fatty acid-activated nuclear receptors involved in gene expression. In other words, we can now envision long chain fatty acids as regulators of signal transduction processes and gene regulation, which in turn will dictate their roles in health and disease. In this review, we will discuss fatty acid-mediated regulation of nuclear receptors. We will focus on peroxisome proliferators-activated receptors (PPARs), liver X receptors (LXR), retinoid X receptors (RXRs), and Hepatocyte Nuclear Factor alpha (HNF-4alpha), all of which play pivotal roles in dietary fatty acid-mediated effects. Also, the regulation of gene expression by Conjugated Linoleic Acids (CLA), a family of dienoic fatty acids with a variety of beneficial effects, will be discussed. 相似文献
11.
12.
Reconstitution of transport-active multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes 总被引:1,自引:0,他引:1
The apical multidrug resistance protein MRP2 (symbol ABCC2) is an ATP-dependent export pump for anionic conjugates in polarized cells. MRP2 has only 48% amino acid identity with the paralog MRP1 (ABCC1). In this study we show that purified recombinant MRP2 reconstituted in proteoliposomes is functionally active in substrate transport. The Km values for ATP and LTC4 in the transport by MRP2 in proteoliposomes were 560 microM and 450 nM, respectively. This transport function of MRP2 in proteoliposomes was dependent on the amount of MRP2 protein present and was determined to 2.7 pmol x min(-1) x mg MRP2(-1) at 100 nM LTC4. Transport was competitively inhibited by the quinoline derivative MK571 with 50% inhibition at about 12 microM. Our data document the first reconstitution of transport-active purified recombinant MRP2. Binding and immunoprecipitation experiments indicated that MRP2 preferentially associates with the chaperone calnexin, but co-reconstitution studies using purified MRP2 and purified calnexin in proteoliposomes suggested that the LTC4 transport function of MRP2 is not dependent on calnexin. The purified, transport-active MRP2 may serve to identify additional interacting proteins in the apical membrane of polarized cells. 相似文献
13.
14.
15.
16.
Nrf2 signaling in coordinated activation of antioxidant gene expression 总被引:15,自引:0,他引:15
Jaiswal AK 《Free radical biology & medicine》2004,36(10):1199-1207
17.
Ute Boettler Katharina SommerfeldNadine Volz Gudrun PahlkeNicole Teller Veronika SomozaRoman Lang Thomas HofmannDoris Marko 《The Journal of nutritional biochemistry》2011,22(5):426-440
Oxidative cellular stress initiates Nrf2 translocation into the nucleus, thus inducing antioxidant response element (ARE)-mediated expression of Phase II enzymes involved in detoxification and antioxidant defence. We investigated whether coffee extracts (CEs) of different proveniences and selected constituents have an impact on the Nrf2/ARE pathway in human colon carcinoma cells (HT29). Assessed as increased nuclear Nrf2 protein, Nrf2 nuclear translocation was modulated by different CEs as observed by Western blot analysis. In addition to the known Nrf2 activator 5-O-caffeoylquinic acid (CGA), pyridinium derivatives like the N-methylpyridinium ion (NMP) were identified as potent activators of Nrf2 nuclear translocation and ARE-dependent gene expression of selected antioxidative Phase II enzymes in HT29. Thereby, the substitution pattern at the pyridinium core structure determined the impact on Nrf2-signalling. In contrast, trigonelline was found to interfere with Nrf2 activation, effectively suppressing the NMP-mediated induction of Nrf2/ARE-dependent gene expression. In conclusion, several coffee constituents, partly already present in the raw material as well as those generated during the roasting process, contribute to the Nrf2-translocating properties of consumer-relevant coffee. A fine tuning in the degradation/formation of activating and deactivating constituents of the Nrf2/ARE pathway during the roasting process appears to be critical for the chemopreventive properties of the final coffee product. 相似文献
18.
19.
A new mutation of the ATP-binding cassette,sub-family C,member 2 (ABCC2) gene in a Japanese patient with Dubin-Johnson syndrome 总被引:5,自引:0,他引:5
Dubin-Johnson syndrome (DJS) is an inherited disorder characterized by conjugated hyperbilirubinemia and is caused by mutations of the canalicular multispecific organic anion transporter (cMOAT)/ multidrug resistance protein 2 (MRP2)/ ATP-binding cassette, sub-family C, member 2 (ABCC2) gene. The ABCC2 protein is located in the apical membrane of hepatocytes, and known mutations of this gene cause impaired maturation and trafficking of the mutated protein from the endoplasmic reticulum (ER) to the Golgi complex. We have characterized the ABCC2 gene in a Japanese DJS patient by polymerase chain reaction and DNA sequencing, resulting in the identification of two mutations. One mutation, 1815+2 (T>A) in the splice donor site of intron 13, has already been reported. However, we have identified a novel nonsense mutation consisting of a (C>T) transition at nucleotide 3928 in exon 28. 相似文献