首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular endothelial growth factor (VEGF) receptor blockade impairs lung growth and decreases nitric oxide (NO) production in neonatal rat lungs. Inhaled NO (iNO) treatment after VEGF inhibition preserves lung growth in infant rats by unknown mechanisms. We hypothesized that neonatal VEGF inhibition disrupts lung growth by causing apoptosis in endothelial cells, which is attenuated by early iNO treatment. Three-day-old rats received SU-5416, an inhibitor of VEGF receptor, or its vehicle and were raised in room air with or without iNO (10 ppm). SU-5416 reduced alveolar counts and lung vessel density by 28% (P < 0.005) and 21% (P < 0.05), respectively, as early as at 7 days of age. SU-5416 increased lung active caspase-3 protein by 60% at 5 days of age (P < 0.05), which subsided by 7 days of age, suggesting a transient increase in lung apoptosis after VEGF blockade. Apoptosis primarily colocalized to lung vascular endothelial cells, and SU-5416 increased endothelial cell apoptotic index by eightfold at 5 days of age (P <0.0001). iNO treatment after SU-5416 prevented the increases in lung active caspase-3 and in endothelial cell apoptotic index. There was no difference in alveolar type 2 cell number between control and SU-5416-treated rats. We conclude that neonatal VEGF receptor inhibition causes transient apoptosis in pulmonary endothelium, which is followed by persistently impaired lung growth. Early iNO treatment after VEGF inhibition reduces endothelial cell apoptosis in neonatal lungs. We speculate that enhancing endothelial cell survival after lung injury may preserve neonatal lung growth in bronchopulmonary dysplasia.  相似文献   

2.
VEGF plays a critical role during lung development and is decreased in human infants with bronchopulmonary dysplasia. Inhibition of VEGF receptors in the newborn rat decreases vascular growth and alveolarization and causes pulmonary hypertension (PH). Nitric oxide (NO) is a downstream mediator of VEGF, but whether the effects of impaired VEGF signaling are due to decreased NO production is unknown. Therefore, we sought to determine whether impaired VEGF signaling downregulates endothelial NO synthase (eNOS) expression in the developing lung and whether inhaled NO (iNO) decreases PH and improves lung growth after VEGF inhibition. Newborn rats received a single dose of SU-5416 (a VEGF receptor inhibitor) or vehicle by subcutaneous injection and were killed up to 3 wk of age for assessments of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), lung eNOS protein, and NOx production in isolated perfused lungs (IPL). Neonatal treatment with SU-5416 increased RVH in infant rats and reduced RAC. Compared with controls, SU-5416 reduced lung eNOS protein expression by 89% at 5 days (P < 0.01). IPL studies from day 14 rats demonstrated increased baseline pulmonary artery pressure and lower perfusate NOx concentration after SU-5416 treatment. Importantly, iNO treatment prevented the increase in RVH and improved RAC after SU-5416 treatment. We conclude that treatment of neonatal rats with SU-5416 downregulates lung eNOS expression and that iNO therapy decreases PH and improves lung growth after SU-5416 treatment. We speculate that decreased NO production contributes to PH and decreases distal lung growth caused by impaired VEGF signaling.  相似文献   

3.
We hypothesized that abnormal fetal lung growth in experimental congenital diaphragmatic hernia after maternal nitrofen exposure alters lung structure due to impaired VEGF signaling, which can be reversed with VEGF or nitric oxide (NO) treatment. Timed-pregnant Sprague-Dawley rats were treated with nitrofen on embryonic day 9 (E9), and fetal lungs were harvested for explant culture on E15. Explants were maintained in 3% O2 for 3 days and were treated with NO gas or recombinant human VEGF protein for 3 days. To determine the effects of VEGF inhibition on lung structure, normal fetal lung explants were treated with SU-5416, a VEGF receptor inhibitor, with or without exogenous NO or VEGF. We found that nitrofen treatment impaired lung structure, as evidenced by decreased branching at day 0, but lung structure was not different from controls after 3 days in culture. Nitrofen reduced lung VEGF but not endothelial NO synthase protein level. Treatment with NO enhanced lung growth in control and nitrofen-exposed lungs; however, the response to NO in the nitrofen-treated lungs was reduced when compared with controls. VEGF treatment did not cause a further increase in lung complexity after nitrofen exposure. SU-5416 treatment altered lung structure, which improved with NO but not VEGF treatment. Both nitrofen and SU-5416 treatment increased apoptosis in the mesenchyme of fetal lung explants. We conclude that nitrofen exposure increased apoptosis, decreased lung growth and reduced VEGF expression, and that exogenous NO but not VEGF treatment enhances lung growth. Disruption of lung architecture after VEGF receptor blockade was similar to nitrofen-induced changes but was more responsive to NO.  相似文献   

4.
Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.  相似文献   

5.
VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice   总被引:1,自引:0,他引:1  
Proliferation of cyst-lining epithelial cells is an integral part of autosomal dominant polycystic kidney disease (ADPKD) cyst growth. Cytokines and growth factors within cyst fluids are positioned to induce cyst growth. Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor present in ADPKD liver cyst fluids (human 1,128 ± 78, mouse 2,787 ± 136 pg/ml) and, to a lesser extent, in ADPKD renal cyst fluids (human 294 ± 41, mouse 191 ± 90 pg/ml). Western blotting showed that receptors for VEGF (VEGFR1 and VEGFR2) were present in both normal mouse bile ducts and pkd2(WS25/–) liver cyst epithelial cells. Treatment of pkd2(WS25/–) liver cyst epithelial cells with VEGF (50–50,000 pg/ml) or liver cyst fluid induced a proliferative response. The effect on proliferation of liver cyst fluid was inhibited by SU-5416, a potent VEGF receptor inhibitor. Treatment of pkd2(WS25/–) mice between 4 and 8 mo of age with SU-5416 markedly reduced the cyst volume density of the liver (vehicle 9.9 ± 4.3%, SU-5416 1.8 ± 0.7% of liver). SU-5416 treatment between 4 and 12 mo of age markedly protected against increases in liver weight [pkd2(+/+) 4.8 ± 0.2%, pkd2(WS25/–)-vehicle 10.8 ± 1.9%, pkd2(WS25/–)-SU-5416 4.8 ± 0.4% body wt]. The capacity of VEGF signaling to induce in vitro proliferation of pkd2(WS25/–) liver cyst epithelial cells and inhibition of in vivo VEGF signaling to retard liver cyst growth in pkd2(WS25/–) mice indicates that the VEGF signaling pathway is a potentially important therapeutic target in the treatment of ADPKD liver cyst disease. autosomal dominant polycystic kidney disease; SU-5416; growth factors; cytokines  相似文献   

6.
Evidence is accumulating that activation of the pancreatic endoplasmic reticulum kinase (PERK) in response to endoplasmic reticulum (ER) stress adapts tumor cells to the tumor microenvironment and enhances tumor angiogenesis by inducing vascular endothelial growth factor A (VEGF-A). Recent studies suggest that VEGF-A can act directly on certain tumor cell types in an autocrine manner, via binding to VEGF receptor 2 (VEGFR2), to promote tumor cell migration and invasion. Although several reports show that PERK activation increases VEGF-A expression in medulloblastoma, the most common solid malignancy of childhood, the role that either PERK or VEGF-A plays in medulloblastoma remains elusive. In this study, we mimicked the moderate enhancement of PERK activity observed in tumor patients using a genetic approach and a pharmacologic approach, and found that moderate activation of PERK signaling facilitated medulloblastoma cell migration and invasion and increased the production of VEGF-A. Moreover, using the VEGFR2 inhibitor SU5416 and the VEGF-A neutralizing antibody to block VEGF-A/VEGFR2 signaling, our results suggested that tumor cell-derived VEGF-A promoted medulloblastoma cell migration and invasion through VEGFR2 signaling, and that both VEGF-A and VEGFR2 were required for the promoting effects of PERK activation on medulloblastoma cell migration and invasion. Thus, these findings suggest that moderate PERK activation promotes medulloblastoma cell migration and invasion through enhancement of VEGF-A/VEGFR2 signaling.  相似文献   

7.
We examined whether PDGF may directly stimulate the expression of VEGF by retinal pigment epithelial (RPE) cells in vitro, and the involvement of three signal transduction pathways in the regulation of PDGF-evoked cell proliferation, migration, and production of VEGF-A was investigated. PDGF stimulated the gene and protein expression of VEGF-A by RPE cells, and increased cell proliferation and chemotaxis. PDGF activated all signaling pathways investigated, as determined by increased phosphorylation levels of ERK1/2, p38, and Akt proteins. The three signaling pathways were involved in the mediation of PDGF-evoked cell proliferation, while p38 and PI3K mediated cell migration, and PI3K mediated secretion of VEGF-A. In addition to VEGF-A, the cells expressed mRNAs for various members of the VEGF family and for their receptors, including VEGF-B, -C, -D, flt-1, and KDR. The data indicate that PDGF selectively stimulates the expression of VEGF-A in RPE cells. PDGF evokes at least three signal transduction pathways which are differentially involved in various cellular responses.  相似文献   

8.
Vascular endothelial growth factor (VEGF-A) is a crucial stimulator of vascular cell migration and proliferation. Using bone marrow-derived human adult mesenchymal stem cells (MSCs) that did not express VEGF receptors, we provide evidence that VEGF-A can stimulate platelet-derived growth factor receptors (PDGFRs), thereby regulating MSC migration and proliferation. VEGF-A binds to both PDGFRalpha and PDGFRbeta and induces tyrosine phosphorylation that, when inhibited, results in attenuation of VEGF-A-induced MSC migration and proliferation. This mechanism was also shown to mediate human dermal fibroblast (HDF) migration. VEGF-A/PDGFR signaling has the potential to regulate vascular cell recruitment and proliferation during tissue regeneration and disease.  相似文献   

9.
VEGF or VEGF-A is a major regulator of angiogenesis and has been recently shown to be important in organ repair. The potential role of VEGF in acetaminophen (APAP)-induced hepatotoxicity and recovery was investigated in B6C3F1 male mice. Mice were treated with APAP (300 mg/kg ip) and killed at various time points that reflect both the acute and recovery stages of toxicity. VEGF-A protein levels were increased 7-fold at 8 h and followed the development of hepatotoxicity. VEGF receptor 1, 2, and 3 (VEGFR1, VEGFR2, and VEGFR3, respectively) expression increased throughout the time course, with maximal expression at 48, 8, and 72 h, respectively. Treatment with the VEGF receptor inhibitor SU5416 (25 mg/kg ip at 3 h) had no effect on toxicity at 6 or 24 h. In further studies, the role of SU5416 on the late stages of toxicity was examined. Treatment of mice with APAP and SU5416 (25 mg/kg ip at 3 h) resulted in decreased expression of PCNA, a marker of cellular proliferation. Expression of platelet endothelial cell adhesion molecule, a measure of small vessel density, and endothelial nitric oxide synthase (NOS), a downstream target of VEGFR2, were increased at 48 and 72 h following toxic doses of APAP, and treatment with SU5416 decreased their expression. These data indicate that endogenous VEGF is critically important to the process of hepatocyte regeneration in APAP-induced hepatotoxicity in the mouse.  相似文献   

10.
BackgroundPulmonary emphysema is characterized by loss of alveolar structures. We have found that bone marrow (BM) mesenchymal stem cell (MSC) transplantation ameliorates papain-induced pulmonary emphysema. However, the underlying mechanism is not completely understood. It has been shown that blocking the vascular endothelial growth factor (VEGF) signaling pathway leads to apoptosis of lung cells and pulmonary emphysema, and MSC are capable of secreting VEGF. We hypothesized that MSC transplantation may have a protective effect on pulmonary emphysema by increasing VEGF-A expression and inhibiting apoptosis of lung cells.MethodsWe examined the morphology and expression of VEGF-A in rat lung after papain treatment and MSC transplantation. We also used a co-culture system in which MSC and cells prepared from papain-treated lungs or control lungs were cultured together. The levels of VEGF-A in cells and culture medium were determined, and apoptosis of cultured lung cells was evaluated.ResultsVEGF-A expression in rat lungs was decreased after papain treatment, which was partly rescued by MSC transplantation. MSC production of VEGF-A was increased when MSC were co-cultured with cells prepared from papain-treated lungs. Furthermore, the apoptosis of papain-treated lung cells was inhibited when co-cultured with MSC. The induction of MSC production of VEGF-A by papain-treated lung cells was inhibited by adding anti-tumor necrosis factor (TNF)-α antibody to the medium.ConclusionsThe protective effect of MSC transplantation on pulmonary emphysema may be partly mediated by increasing VEGF-A expression and inhibiting the apoptosis of lung cells. TNF-α released from papain-treated lung cells induces MSC to secret VEGF-A.  相似文献   

11.
Hepatocyte growth factor (HGF) signaling via its receptor, the proto-oncogene Met, alters cell proliferation and motility and has been associated with tumor metastasis. HGF treatment of HepG2 human hepatocellular carcinoma cells induces cell migration concomitant with increased levels of the p27(kip1) cyclin-cdk inhibitor. HGF signaling resulted in nuclear export of endogenous p27 to the cytoplasm, via Ser-10 phosphorylation, where it colocalized with F-actin. Introduction of transducible p27 protein (TATp27) was sufficient for actin cytoskeletal rearrangement and migration of HepG2 cells. TATp27 mutational analysis identified a novel p27 C-terminal domain required for cell migration, distinct from the N-terminal cyclin-cyclin-dependent kinase (cdk) binding domain. Loss or disruption of the p27 C-terminal domain abolished both actin rearrangement and cell migration. The cell-scattering activity of p27 occurred independently of its cell cycle arrest functions and required cytoplasmic localization of p27 via Ser-10 phosphorylation. Furthermore, Rac GTPase was necessary for p27-dependent migration but alone was insufficient for HepG2 cell migration. These results predicted a migration defect in p27-deficient cells. Indeed, p27-deficient primary fibroblasts failed to migrate, and reconstitution with TATp27 rescued the motility defect. These observations define a novel role for p27 in cell motility that is independent of its function in cell cycle inhibition.  相似文献   

12.
Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF(165) induces RET-tyr(1062) phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF(165) and GDNF have additive effects on RET-tyr(1062) phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF(165) induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF(165) induces RET-tyr(1062) phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells.  相似文献   

13.
Growing evidences support that androgen displays beneficial effects on cardiovascular functions although the mechanism of androgen actions remains to be elucidated. Modulation of endothelial cell growth and function is a potential mechanism of androgen actions. We demonstrated in the present study that androgens [dihydrotestosterone (DHT) and testosterone], but not 17β-estradiol, produced a time- and dose-dependent induction of cell proliferation in primary human aortic endothelial cells (HAECs) as evident by increases in viable cell number and DNA biosynthesis. Real-time qRT-PCR analysis showed that DHT induced androgen receptor (AR), cyclin A, cyclin D1, and vascular endothelial growth factor (VEGF) gene expression in a dose- and time-dependent manner. The addition of casodex, a specific AR antagonist, or transfection of a specific AR siRNA blocked DHT-induced cell proliferation and target gene expression, indicating that the DHT effects are mediated via AR. Moreover, coadministration of SU5416 to block VEGF receptors, or transfection of a specific VEGF-A siRNA to knockdown VEGF expression, produced a dose-dependent blockade of DHT induction of cell proliferation and cyclin A gene expression. Interestingly, roscovitine, a selective cyclin-dependent kinase inhibitor, also blocked the DHT stimulation of cell proliferation with a selective inhibition of DHT-induced VEGF-A expression. These results indicate that androgens acting on AR stimulate cell proliferation through upregulation of VEGF-A, cyclin A, and cyclin D1 in HAECs, which may be beneficial to cardiovascular functions since endothelial cell proliferation could assist the repair of endothelial injury/damage in cardiovascular system.  相似文献   

14.
Angiogenesis and lymphangiogenesis are regulated by members of the vascular endothelial growth factor (VEGF) family of cytokines, which mediate their effects via tyrosine kinase VEGF receptors -1, -2, and -3. We have used wild-type and mutant forms of VEGFs -A, -B, and -C, a pan-VEGFR tyrosine kinase inhibitor (SU5416) as well as neutralizing anti-VEGFR-2 antibodies, to determine which VEGF receptor(s) are required for bovine endothelial cell invasion and tube formation in vitro. This was compared to the ability of these cytokines to induce expression of members of the plasminogen activator (PA)-plasmin system. We found that cytokines which bind VEGFR-2 (human VEGF-A, human VFM23A, human VEGF-C(deltaNdeltaC), and rat VEGF-C(152)) induced invasion, tube formation, urokinase-type-PA, tissue-type-PA, and PA inhibitor-1, invasion and tube formation as well as signaling via the MAP kinase pathway were efficiently blocked by SU5416 and anti-VEGFR-2 antibodies. In contrast, cytokines and mutants which exclusively bind VEGFR-1 (human VFM17 and human VEGF-B) had no effect on invasion and tube formation or on the regulation of gene expression. We were unable to identify cytokines which selectively stimulate bovine VEGFR-3 in our system. Taken together, these findings point to the central role of VEGFR-2 in the angiogenic signaling pathways induced by VEGF-C(deltaNdeltaC) and VEGF-A.  相似文献   

15.
16.
Vascular endothelial growth factor (VEGF) exerts neuroprotective or proinflammatory effects, depending on what VEGF forms (A–E), receptor types (VEGFR1–3), and intracellular signaling pathways are involved. Neonatal monosodium glutamate (MSG) treatment triggers neuronal death by excitotoxicity, which is commonly involved in different neurological disorders, including neurodegenerative diseases. This study was designed to evaluate the effects of VEGFR-2 inhibition on neuronal damage triggered by excitotoxicity in the cerebral motor cortex (CMC) and hippocampus (Hp) after neonatal MSG treatment. MSG was administered at a dose of 4 g/kg of body weight (b.w.) subcutaneously on postnatal days (PD) 1, 3, 5, and 7, whereas the VEGFR-2 inhibitor SU5416 was administered at a dose of 10 mg/kg b.w. subcutaneously on PD 5 and 7, 30 min before the MSG treatment. Neuronal damage was assessed using hematoxylin and eosin staining, fluoro-Jade staining, and TUNEL assay. Additionally, western blot assays for some proteins of the VEGF-A/VEGFR-2 signaling pathway (VEGF-A, VEGFR-2, PI3K, Akt, and iNOS) were carried out. All assays were performed on PD 6, 8, 10, and 14. Inhibition of VEGFR-2 signaling by SU5416 increases the neuronal damage induced by neonatal MSG treatment in both the CMC and Hp. Moreover, neonatal MSG treatment increased the expression levels of the studied VEGF-A/VEGFR-2 signaling pathway proteins, particularly in the CMC. We conclude that VEGF-A/VEGFR-2 signaling pathway activation could be part of the neuroprotective mechanisms that attempt to compensate for neuronal damage induced by neonatal MSG treatment and possibly also in other conditions involving excitotoxicity.  相似文献   

17.
We have previously hypothesized that the development of severe angioproliferative pulmonary hypertension is associated with not only initial endothelial cell (EC) apoptosis followed by the emergence of apoptosis-resistant proliferating EC but also with proliferation of vascular smooth muscle cells (VSMC). We have demonstrated that EC death results in the selection of an apoptosis-resistant, proliferating, and phenotypically altered EC phenotype. We postulate here that the initial apoptosis of EC induces the release of mediators that cause VSMC proliferation. We cultured EC in an artificial capillary CellMax system designed to simulate the highly efficient functions of the human capillary system. We induced apoptosis of microvascular EC using shear stress and the combined VEGF receptor (VEGFR-1 and -2) inhibitor SU-5416. Flow cytometry for the proliferation marker bromodeoxyuridine showed that serum-free medium conditioned by apoptosed EC induced proliferation of VSMC, whereas serum-free medium conditioned by nonapoptosed EC did not. We also show that medium conditioned by apoptosed EC is characterized by increased concentrations of transforming growth factor (TGF)-beta1 and VEGF compared with medium conditioned by nonapoptosed EC and that TGF-beta1 blockade prevented the proliferation of cultured VSMC. In conclusion, EC death induced by high shear stress and VEGFR blockade leads to the production of factors, in particular TGF-beta1, that activate VSMC proliferation.  相似文献   

18.
19.
20.
The intracellular localization of signaling proteins is critical in directing their interactions with both upstream and downstream signaling cascade components. While initially described as a cyclin kinase inhibitor, p21Waf1/Cip1 has since been shown to have bimodal effects on cell cycle progression and cell proliferation, and evidence is emerging that intracellular localization of this protein plays a role in directing its signaling properties by dictating its interactions with downstream molecules. Since we have previously demonstrated a pro-apoptotic and cell cycle inhibitory effect of p21 attenuation after transfection of antisense p21 oligodeoxynucleotides (ODN) in several cell lines, we asked whether cytosolic p21 mediates a positive effect on vascular smooth muscle (VSM) cell cycle transit. We now show that transfection of a nuclear-localization signal deficient (DeltaNLS) p21 construct into VSM cells results in increased cytosolic levels of p21 and causes increased cell cycle transit as measured by [3H]thymidine incorporation. Thus, at least in VSM cells, cytosolic localization of p21 is a means by which this signaling protein transmits pro-mitogenic signals to the proteins responsible for G1/S transition. Furthermore, compartmentalization of p21 may help explain the biphasic nature of p21 in a variety of cell types and may lead to therapeutic advances directed at modulating pathologic cell growth in vascular diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号