首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have been able to assign the human catechol-O-methyltransferase gene (COMT) to chromosome 22q11.2 by using Southern blot analysis of panels of somatic cell hybrids and chromosomal in situ hybridization. Furthermore, Southern blot analysis of DNA from blood and bone marrow samples of a patient with chronic myeloid leukemia (CML), having an extra Philadelphia chromosome (Ph1) in addition to the one produced by the reciprocal translocation between chromosomes 9 and 22, showed increased COMT and BCR gene dosage as compared to DNAs originating from CML patients with only one Ph1 chromosome or from chromosomally normal individuals. Control hybridizations of the same blot with TCRG- and TCRA-specific probes showed corresponding signal intensities in all samples. A relatively frequent two-allele COMT gene RFLP (PIC = 0.37) was recognized in DNAs digested with BglI. Our gene mapping result is in concordance with that previously reported by Brahe et al. (1986), who used an autoradiozymogram assay on different somatic cell hybrids to map this gene to chromosome 22.  相似文献   

2.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

3.
Catechol-O-methyltransferase (COMT; EC 2.1.1.6) is a physiologically important enzyme in the metabolism of catecholamine neurotransmitters and catechol drugs. Using primers derived from the known rat cDNA sequence for COMT, we have used the polymerase chain reaction to produce an amplified DNA fragment corresponding to the complete coding region of the rat gene. With this fragment as a probe, we have hybridized DNAs from two panels consisting of human/rodent and human/hamster somatic cell hybrids carrying various translocations and deletions to refine the chromosomal location of human COMT. Southern blot analysis indicates that the human COMT gene is localized to 22q11.1----q11.2, a region to which several anonymous DNA sequences, but until now, no structural genes, have been assigned.  相似文献   

4.
The human amyloid beta protein is the major constituent of the brain amyloid plaques found in Alzheimer disease. The gene that encodes this protein is located on chromosome 21, and individuals with Down syndrome (trisomy 21) also exhibit an early onset form of Alzheimer disease. We have used the cloned human amyloid beta protein gene and a panel of somatic cell hybrids to map the location of the mouse homolog of this gene. We report here that the mouse gene is located on chromosome 16 within the region 16C3----ter, in common with three other genes which map within the Down syndrome region of human chromosome 21.  相似文献   

5.
A gene for tryptophanyl-tRNA synthetase (EC 6.1.1.2), the enzyme which attaches tryptophan to its tRNA, has previously been assigned to human chromosome 14 by analysis of man-mouse somatic cell hybrids. We report here a method for the electrophoretic separation of Chinese hamster and human tryptophanyl-tRNA synthetases and its application to a series of independently derived Chinese hamster-human hybrids in which part of the human chromosome 14 has been translocated to the human X chromosome. When this derivative der (X),t(X;14) (Xqter leads to Xp22::14q21 leads to 14qter) chromosome carrying the human gene for hypoxanthine-guanine phosphoribosyltransferase was selected for and against in cell hybrid lines by the appropriate selective conditions, the human tryptophanyl-tRNA synthetase activity was found to segregate concordantly. These results provide additional confirmation for the assignment of the tryptophanyl-tRNA synthetase gene to human chromosome 14 and define its intrachromosomal location in the region 14q21 leads to 14qter. Our findings indicate that the genes for tryptophanyl-tRNA synthetase and for ribosomal RNA are not closely linked on chromosome 14.  相似文献   

6.
We have localized the human gene for erythroid potentiating activity (EPA) to the X chromosome by analysis of its segregation pattern in mouse-human somatic cell hybrids. The EPA gene has been further localized to human chromosome region Xp11.1----Xp11.4 by in situ hybridization of a molecularly cloned EPA genomic fragment to metaphase chromosomes.  相似文献   

7.
Dopaminergic system in the prefrontal cortex (PFC) is known to regulate the cognitive functions. Catechol-O-methyl transferase (COMT), one of the major modulators of prefrontal dopamine function, has emerged as an important determinant of schizophrenia associated cognitive dysfunction and response to antipsychotics. A common Val->Met polymorphism (rs4680) in the COMT gene, associated with increased prefrontal dopamine catabolism, impairs prefrontal cognition and might increase risk for schizophrenia. Further, the degree of cognitive improvement observed with antipsychotics in schizophrenia patients is influenced by the COMT activity, and Val/Met has been proposed as a potential pharmacogenetic marker. However, studies evaluating the role of COMT have been equivocal. The presence of other functional polymorphisms in the gene, and the observed ethnic variations in the linkage disequilibrium structure at COMT locus, suggest that COMT activity regulation might be complex. Despite these lacunae in our current understanding, the influence of COMT on PFC mediated cognitive tasks is undeniable. COMT thus represents an attractive candidate for novel therapeutic interventions for cognitive dysfunction. The COMT activity inhibiting drugs including tolcapone and entacapone, have shown promising potential as they selectively modulate dopaminergic transmission. This review is an attempt to summarize the rapidly evolving literature exploring the diverse facets of COMT biology, its functional relevance as a predictive marker and a therapeutic target for schizophrenia.  相似文献   

8.
The human apolipoprotein A-II gene is located on chromosome 1   总被引:7,自引:0,他引:7  
Apolipoprotein (apo) A-II is a major constituent of high density lipoproteins (HDL). The gene for apoA-II has been localized to the p21----qter region of chromosome 1 in man by Southern blot hybridization analysis of DNA from human-mouse cell hybrids using a cloned human apoA-II cDNA probe. The regional assignment was established using two hybrids carrying a reciprocal translocation involving chromosomes 1 and 2. Comparison with previously established gene loci on chromosomes 1 suggests that apoA-II may reside in a conserved linkage group with renin and peptidase C. On the other hand, apoA-II is not linked to the apoA-I gene, which has been localized previously to chromosome 11.  相似文献   

9.
The chromosomal location of the human intestinal Na+/glucose cotransporter gene (SGLT1) was determined using human cDNA and genomic probes for this transporter gene. Southern blot analysis of genomic DNA from 15 mouse-human somatic cell hybrids showed that the human gene for this transporter resides on chromosome 22. Analysis of hamster-human hybrids selectively retaining chromosome 22 or a portion of it allowed specific assignment of the locus to the q11.2----qter region of chromosome 22. A restriction fragment length polymorphism was identified with EcoRI.  相似文献   

10.
Assignment of the human tyrosine aminotransferase gene to chromosome 16   总被引:2,自引:0,他引:2  
Summary The liver enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5) catalyzes the rate-limiting step in the catabolic pathway of tyrosine. Deficiency in TAT enzyme activity underlies the autosomally inherited disorder tyrosinemia II (Richner-Hanhart syndrome). Using a human TAT cDNA clone as hybridization probe, we have determined the chromosomal location of the TAT structural gene by Southern blot analysis of DNAs from a series of human x rodent somatic cell hybrids. The results assign the TAT gene to human chromosome 16.  相似文献   

11.
We report here the localization of the gene for a human T-cell-specific molecule, designated RANTES, to human chromosome region 17q11.2-q12 by in situ hybridization and analysis of somatic cell hybrids using a cDNA probe to the gene. We have recently shown that this gene, which encodes a small, secreted, putative lymphokine, is a member of a larger gene family some of whose members reside on chromosome 4 but most of whose members have not to date been mapped. A secondary hybridization peak was noted on the region of human chromosome 5q31-q34, which may represent the location of other members of the gene family. Interestingly, this latter region overlaps with the location of an extended linked cluster of growth factor and receptor genes, some of which may be coregulated with members of the RANTES gene family.  相似文献   

12.
The chromosomal location of the human gene for erythropoietin (EPO) was determined by Southern blot hybridization analysis of a panel of human-mouse somatic hybrid cell DNAs. DNAs from cell hybrids containing reduced numbers of human chromosomes were treated with the restriction enzyme PstI and screened with a cloned human EPO cDNA probe. EPO is assigned to human chromosome 7 based on the complete cosegregation of EPO with this chromosome in all 45 cell hybrids tested. A cell hybrid containing a translocated derivative of chromosome 7 localizes EPO to 7pter----q22. A HindIII restriction fragment length polymorphism is detected by hybridization of the EPO cDNA probe to human genomic DNA.  相似文献   

13.
Catechol-O-methyl transferase (COMT) catalyzes the first step in one of the major pathways in the degradation of catecholamines. The COMT gene on chromosome 22 has been considered a candidate gene for many neuropsychiatric disorders, in part because an exon 4 single nucleotide polymorphism (SNP) in COMT causes an amino acid substitution associated with significantly altered enzyme activity. This functional variant, detected as an NlaIII restriction site polymorphism (RSP), is polymorphic in populations from around the world. A four-site haplotype spanning 28 kb effectively encompasses COMT. This haplotype is comprised of two novel polymorphisms [a tetranucleotide short tandem repeat polymorphism (STRP) in intron 1 and a HindIII RSP at the 5' end of COMT], the NlaIII site, and another previously published site - a BglI RSP at the 3' end of the gene. Overall linkage disequilibrium (LD) for this haplotype is strong and significant in 32 population samples from around the world. Conditional probabilities indicate that, in spite of moderate to strong disequilibrium in most non-African populations, the NlaIII site, although often used for prediction, would not always be a reliable predictor of allelic variation at the other sites. Because other functional variation might exist, especially regulatory variation, these findings indicate that haplotypes would be more effective indicators of possible involvement of COMT in disease etiology.  相似文献   

14.
Microcell-mediated chromosome transfer is a useful technique for the study of gene function, gene regulation, gene mapping, and functional cloning in mammalian cells. Complete panels of donor cell lines, each containing a different human chromosome, have been developed. These donor cell lines contain a single human chromosome marked with a dominant selectable gene in a rodent cell background. However, a similar panel does not exist for murine chromosomes. To produce mouse monochromosomal donor hybrids, we have utilized embryonic stem (ES) cells with targeted gene disruptions of known chromosomal location as starting material. ES cells with mutations in aprt, fyn, and myc were utilized to generate monochromosomal hybrids with neomycin phosphotransferase-marked murine Chr 8, 10, or 15 respectively in a hamster or rat background. This same methodology can be used to generate a complete panel of marked mouse chromosomes for somatic cell genetic experimentaion. Received: 28 July 1998 / Accepted: 15 December 1998  相似文献   

15.
Granulins are a family of cysteine rich polypeptides some of which have growth modulatory activity. We showed previously that the granulins are encoded within the same precursor consisting of seven granulin domains arranged in tandem. Here we report the chromosomal location and structural organization of the protein coding region of the granulin gene. The granulin gene was assigned to chromosome 17 using DNA from human-hamster somatic cell hybrids. The protein-coding region of the granulin gene was shown to comprise 12 exons covering about 3700 bp. Each tandem granulin repeat is encoded by two non-equivalent exons, a configuration unique to the granulins that would permit the formation of hybrid granulin-like proteins by alternate splicing.  相似文献   

16.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

17.
The chromosomal location of the murine lambda 5 gene was analyzed by Southern hybridization using restriction enzyme-digested DNA from a panel of 15 mouse X hamster somatic cell hybrids. Sequences homologous with those of lambda 5 DNA were detected in DNA of 5 hybrids. In all 5 hybrids lambda 5 was contained in restriction fragments of equal sizes, the lengths of which indicated that the germline configuration of lambda 5 with three exons and the restriction sites expected from its genomic structure were present. Southern hybridization with the murine lambda 1 gene as a probe detected the same 5 hybrids as positive. The only mouse chromosome present on all of the positive hybrids, and absent from negative ones, was number 16. We conclude that lambda 5 is situated on the same chromosome as lambda 1, i.e., on the murine chromosome 16.  相似文献   

18.
The structural gene (beta GALA) coding for lysosomal beta-galactosidase-A (EC 3.2.1.23) has been assigned to human chromosome 3 using man--mouse somatic cell hybrids. Human beta-galactosidase-A was identified in cell hybrids with a species-specific antiserum to human liver beta-galactosidase-A. The antiserum precipitates beta-galactosidase-A from human tissues, cultured cells, and cell hybrids, and recognizes cross-reacting material from a patient with GM1 gangliosidosis. We have analyzed 90 primary man--mouse hybrids derived from 12 separate fusion experiments utilizing cells from 9 individuals. Enzyme segregation analysis excluded all chromosomes for beta GALA assignment except chromosome 3. Concordant segregation of chromosomes and enzymes in 16 cell hybrids demonstrated assignment of beta GALA to chromosome 3; all other chromosomes were excluded. The evidence suggests that GM1 gangliosidosis is a consequence of mutation at this beta GALA locus on chromosome 3.  相似文献   

19.
Chicken phosphoglucomutase (PGM-2), serum albumin, vitamin D binding protein (Gc) and phosphoribosyl pyrophosphate amidotransferase (PPAT) structural genes have been mapped to chicken chromosome 6 using chicken-Chinese hamster somatic cell hybrids containing this chromosome as the only chicken genetic material. Chicken PGM-2 activity was detected in the hybrids using cellogel electrophoresis and a substrate, ribose-1-phosphate (R-1-P), that allows the detection of PGM-1 activity in mice and PGM-2 activity in humans. Chicken albumin sequences were detected in the hybrids with the use of a labelled chicken serum albumin cloned cDNA. Classical studies have shown linkage of the serum albumin and Gc genes, and the Gc gene also can be localized to chicken chromosome 6. The PPAT gene was localized to this chromosome in previous studies using these hybrids. A homologous linkage group has been identified in mammals and, therefore, a chromosomal linkage group containing at least four genes--Gc, serum albumin, PPAT, and PGM-2--has been conserved over a period of 300 million years, throughout both avian and mammalian evolution.  相似文献   

20.
We have used a cDNA probe for human cholesteryl ester transfer protein (CETP) to determine the chromosomal location for the human gene. Southern blot analysis of DNA from 17 independent mouse-human somatic cell hybrids demonstrated the presence of the gene for human CETP on chromosome 16. Regional mapping of the gene by in situ hybridization was consistent with these results and indicated that the gene resides in the 16q12-21 region of the chromosome. These findings provide an additional polymorphic marker for chromosome 16, as several relatively common restriction fragment length polymorphisms of the gene have previously been reported, and they have significance for studies directed at the identification of genetic factors affecting plasma lipoprotein metabolism and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号