首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jiang YL  Ichikawa Y  Song F  Stivers JT 《Biochemistry》2003,42(7):1922-1929
The reaction catalyzed by the DNA repair enzyme uracil DNA glycosylase (UDG) proceeds through an unprecedented stepwise mechanism involving a positively charged oxacarbenium ion sugar and uracil anion leaving group. Here we use a novel approach to evaluate the catalytic contribution of electrostatic interactions between four essential phosphodiester groups of the DNA substrate and the cationic transition state. Our strategy was to substitute each of these phosphate groups with an uncharged (R)- or (S)-methylphosphonate linkage (MeP). We then compared the damaging effects of these methylphosphonate substitutions on catalysis with their damaging effects on binding of a cationic 1-azadeoxyribose (1-aza-dR(+)) oxacarbenium ion analogue to the UDG-uracil anion binary complex. A plot of log k(cat)/K(m) for the series of MeP-substituted substrates against log K(D) for binding of the 1-aza-dR(+) inhibitors gives a linear correlation of unit slope, confirming that the electronic features of the transition state resemble that of the 1-aza-dR(+), and that the anionic backbone of DNA is used in transition state stabilization. We estimate that all of the combined phosphodiester interactions with the substrate contribute 6-8 kcal/mol toward lowering the activation barrier, a stabilization that is significant compared to the 16 kcal/mol catalytic power of UDG. However, unlike groups of the enzyme that selectively stabilize the charged transition state by an estimated 7 kcal/mol, these phosphodiester groups also interact strongly in the ground state. To our knowledge, these results provide the first experimental evidence for electrostatic stabilization of a charged enzymatic transition state and intermediate using the anionic backbone of DNA.  相似文献   

2.
Jiang YL  Ichikawa Y  Stivers JT 《Biochemistry》2002,41(22):7116-7124
We have investigated the inhibition of the DNA repair enzyme uracil DNA glycosylase (UDG) by an 11-mer oligonucleotide (AIA) containing a cationic 1-aza-deoxyribose (I) residue designed to be a stable mimic of the high-energy oxacarbenium ion reaction intermediate [Werner, R. M., and Stivers, J. T. (2000) Biochemistry 39, 14054-14064]. Inhibition kinetics and direct binding studies indicate that AIA binds weakly to the free enzyme (K(D) = 2 microM) but binds 4000-fold more tightly to the enzyme-uracil anion (EU) product complex (K(D) = 500 pM). The importance of the positive charge on the 1-nitrogen in binding is established by the observation that AIA binds >30 000-fold more tightly to the EU complex than the corresponding neutral tetrahydrofuran (F) abasic site product analogue (AFA). The unusual inhibition mechanism for AIA results in a time dependence that resembles slow-onset inhibition even though the apparent on-rate of the inhibitor for the EU(-) binary product complex is moderate (1 microM(-1) x s(-1)). Accordingly, the low K(D) of AIA for the EU complex is largely due its very slow off-rate (5 x 10(-4) x s(-1)). These results support previous kinetic isotope effect measurements that indicate UDG stabilizes a discrete oxacarbenium ion-uracil anion intermediate. This oxacarbenium ion mimic represents the tightest binding inhibitor of UDG yet identified.  相似文献   

3.
The glycosidic bond hydrolysis reaction of the enzyme uracil DNA glycosylase (UDG) occurs by a two-step mechanism involving complete bond breakage to the uracil anion leaving group in the first step, formation of a discrete glycosyl cation-uracil anion intermediate, followed by water attack in a second transition-state leading to the enzyme-bound products of uracil and abasic DNA. We have synthesized and determined the binding affinities of unimolecular mimics of the substrate and first transition-state (TS1) in which the uracil base is covalently attached to the sugar, and in addition, bimolecular mimics of the second addition transition state (TS2) in which the base and sugar are detached. We find that the bipartite mimics of TS2 are superior to the TS1 mimics. These results indicate that bipartite TS2 inhibitors could be useful for inhibition of glycosylases that proceed by stepwise reaction mechanisms.  相似文献   

4.
Using off-resonance Raman spectroscopy, we have examined each complex along the catalytic pathway of the DNA repair enzyme uracil DNA glycosylase (UDG). The binding of undamaged DNA to UDG results in decreased intensity of the DNA Raman bands, which can be attributed to an increased level of base stacking, with little perturbation in the vibrational modes of the DNA backbone. A specific complex between UDG and duplex DNA containing 2'-beta-fluorodeoxyuridine shows similar increases in the level of DNA base stacking, but also a substrate-directed conformational change in UDG that is not observed with undamaged DNA, consistent with an induced-fit mechanism for damage site recognition. The similar increases in the level of DNA base stacking for the nonspecific and specific complexes suggest a common enzyme-induced distortion in the DNA, potentially DNA bending. The difference spectrum of the extrahelical uracil base in the substrate-analogue complexes reveals only a small electron density reorganization in the uracil ring for the ground state complex, but large 34 cm(-)(1) downshifts in the carbonyl normal modes. Thus, UDG activates the uracil ring in the ground state mainly through H bonds to its C=O groups, without destroying its quasi-aromaticity. This result is at variance with the conclusion from a recent crystal structure, in which the UDG active site significantly distorts the flipped-out pseudouridine analogue such that a change in hybridization at C1 occurs [Parikh, S. S., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 5083]. The Raman vibrational signature of the bound uracil product differs significantly from that of free uracil at neutral pH, and indicates that the uracil is anionic. This is consistent with recent NMR results, which established that the enzyme stabilizes the uracil anion leaving group by 3.4 pK(a) units compared to aqueous solution, contributing significantly to catalysis. These observations are generally not apparent from the high-resolution crystal structures of UDG and its complexes with DNA; thus, Raman spectroscopy can provide unique and valuable insights into the nature of enzyme-DNA interactions.  相似文献   

5.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised approximately 1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the -1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the -5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme-substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis.  相似文献   

6.
The DNA repair enzyme uracil DNA glycosylase has been crystallized with a cationic 1-aza-2'-deoxyribose-containing DNA that mimics the ultimate transition state of the reaction in which the water nucleophile attacks the anomeric center of the oxacarbenium ion-uracil anion reaction intermediate. Comparison with substrate and product structures, and the previous structure of the intermediate determined by kinetic isotope effects, reveals an exquisite example of geometric strain, least atomic motion, and electrophile migration in biological catalysis. This structure provides a rare opportunity to reconstruct the detailed structural transformations that occur along an enzymatic reaction coordinate.  相似文献   

7.
Escherichia coli uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil bases in DNA by flipping the deoxyuridine from the DNA helix [Stivers, J. T., et al. (1999) Biochemistry 38, 952]. A general acid-base mechanism has been proposed whereby His187 facilitates leaving group departure by protonating the O2 of uracil and Asp64 activates a water molecule for nucleophilic attack at C1' of the deoxyribose. Detailed kinetic studies on the H187Q, H187A, and D64N mutant enzymes indicate that Asp64 and His187 stabilize the chemical transition state by 5.3 and 4.8 kcal/mol, respectively, with little effect on substrate or product binding. The pH dependence of k(cat) for wild-type and H187Q UDG indicates that an unprotonated group in the enzyme-substrate complex (pK(a) = 6.2 +/- 0.2) is required for catalysis. This unprotonated group has a small DeltaH of ionization (-0.4 +/- 1.7 kcal/mol) and is absent in the pH profile for D64N UDG, suggesting that it corresponds to the general base Asp64. The pH dependence of k(cat) for wild-type, H187Q, and D64N UDG shows no evidence for an essential protonated group over the pH range of 5.5-10. Hence, the pK(a) of His187 must be outside this pH range if it serves as an electrophilic catalyst. These results support a mechanism in which Asp64 serves as the general base and His187 acts as a neutral electrophile, stabilizing a developing negative charge on uracil O2 in the transition state. In the following paper of this issue we establish by crystallography and heteronuclear NMR spectroscopy that the imidazole of His187 is neutral during the catalytic cycle of UDG.  相似文献   

8.
Uracil‐DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil‐DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.  相似文献   

9.
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ~1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.  相似文献   

10.
Y L Jiang  J T Stivers 《Biochemistry》2001,40(25):7710-7719
The DNA repair enzyme uracil DNA glycosylase (UDG) is a powerful N-glycohydrolase that cleaves the glycosidic bond of deoxyuridine in DNA. We have investigated the role of substrate binding energy in catalysis by systematically dismantling the optimal substrate Ap(+1)UpA(-1)pA(-2) by replacing the nucleotides at the +1, -1, or -2 position with a tetrahydrofuran abasic site nucleotide (D), a 3-hydroxypropyl phosphodiester spacer (S), a phosphate monoester (p), or a hydroxyl group (h). Contrary to previous reports, the minimal substrate for UDG is 2'-deoxyuridine (hUh). UDG has a significant catalytic efficiency (CE) for hUh of 4 x 10(7) M(-1) [CE = (k(cat)/K(m))(1/k(non)), where k(non) is the rate of the spontaneous hydrolysis reaction of hUh at 25 degrees C]. Addition of +1 and -1 phosphate monoanions to form pUp increases k(cat)/K(m) by 45-fold compared to that of hUh. The k(cat)/K(m) for pUp, but not pU or Up, is found to decrease by 20-fold over the pH range of 6-9 with a pK(a) of 7.1, which is identical to the pK(a) values for deprotonation of the +1 and -1 phosphate groups determined by the pH dependence of the (31)P NMR chemical shifts. This pH dependence indicates that binding of the pUp tetraanion is disfavored, possibly due to unfavorable desolvation or electrostatic properties of the highly charged +1 and -1 phosphate groups. Addition of flexible hydroxypropyl groups to the +1 and -1 positions to make SpUpS increases k(cat)/K(m) by more than 10(5)-fold compared to that of hUh, which is a 20-fold greater effect than observed with rigid D substituents in these positions (i.e., DpUpD). The -2 phosphoester or nucleotide is found to increase the reactivity of trimer substrates with rigid furanose rings or nucleotides in the +1 and -1 positions by 1300-270000-fold (i.e., DpUpD --> DpUpDpA or ApUpA --> ApUpApA). In contrast, the -2 nucleotide provides only an 8-fold rate enhancement when appended to the substrate containing the more flexible +1 and -1 S substituents (SpUpS --> SpUpSpA). These context-dependent effects of a -2 nucleotide are interpreted in terms of a mechanism in which the binding energy of this "handle" is used drive the rigid +1 and -1 A or D substituents into their binding pockets, resulting in a net catalytic benefit of -4.3 to -7.5 kcal/mol. Taken together, these results systematically track how UDG uses distant site binding interactions to produce an overall four billion-fold increase in CE compared to that of the minimal substrate hUh.  相似文献   

11.
Seibert E  Ross JB  Osman R 《Biochemistry》2002,41(36):10976-10984
Uracil DNA glycosylase (UDG) is a base excision repair enzyme that specifically recognizes and removes uracil from double- or single-stranded DNA. The efficiency of the enzyme depends on the DNA sequence surrounding the uracil. Crystal structures of UDG in complex with DNA reveal that the DNA is severely bent and distorted in the region of the uracil. This suggests that the sequence-dependent efficiency of the enzyme may be related to the energetic cost of DNA distortion in the process of specific damage recognition. To test this hypothesis, molecular dynamics simulations were performed on two sequences representing extreme cases of UDG efficiency, AUA/TAT (high efficiency) and GUG/CAC (low efficiency). Analysis of the simulations shows that the effective bending force constants are lower for the AUA/TAT sequence, indicating that this sequence is more flexible than the GUG/CAC sequence. Fluorescence lifetimes of the adenine analogue 2-aminopurine (2AP), replacing adenine opposite the uracil, are shorter in the context of the AUA/TAT sequence, indicating more dynamic base-base interaction and greater local flexibility than in the GUG/CAC sequence. Furthermore, the K(M) of Escherichia coli UDG for the AUA/TAT sequence is 10-fold smaller than that for the GUG/CAC sequence, while the k(cat) is only 2-fold smaller. This indicates that differences in UDG efficiency largely arise from differences in binding and not catalysis. These results link directly flexibility near the damaged DNA site with the efficiency of DNA repair.  相似文献   

12.
Uracil DNA glycosylase (UDG), a ubiquitous and highly specific enzyme, commences the uracil excision repair pathway. Structural studies have shown that the tyrosine in a highly conserved GQDPY water-activating loop of UDGs blocks the entry of thymine or purines into the active site pocket. To further understand the role of this tyrosine (Y66 in Escherichia coli UDG), we have overproduced and characterized Y66F, Y66H, Y66L and Y66W mutants. The complexes of the wild-type, Y66F, Y66H and Y66L UDGs with uracil DNA glycosylase inhibitor (Ugi) (a proteinaceous substrate mimic) were stable to 8 M urea. However, some dissociation of the complex involving the Y66W UDG occurred at this concentration of urea. The catalytic efficiencies (Vmax / Km) of the Y66L and Y66F mutants were similar to those of the wild-type UDG. However, the Y66W and Y66H mutants were ~7- and ~173-fold compromised, respectively, in their activities. Interestingly, the Y66W mutation has resulted in an enzyme which is resistant to product inhibition. Preferential utilization of a substrate enabling a long range contact between the –5 phosphate (upstream to the scissile uracil) and the enzyme, and the results of modeling studies showing that the uracil-binding cavity of Y66W is wider than those of the wild type and other mutant UDGs, suggest a weaker interaction between uracil and the Y66W mutant. Furthermore, the fluorescence spectroscopy of UDGs and their complexes with Ugi, in the presence of uracil or its analog, 5-bromouracil, suggests compromised binding of uracil in the active site pocket of the Y66W mutant. Lack of inhibition of the Y66W UDG by apyrimidinic DNA (AP-DNA) is discussed to highlight a potential additional role of Y66 in shielding the toxic effects of AP-DNA, by lowering the rate of its release for subsequent recognition by an AP endonuclease.  相似文献   

13.
We have purified uracil DNA-glycosylase (UDG) from calf thymus 32,000-fold and studied its biochemical properties, including sequence specificity. The enzyme is apparently closely related to human UDG, since it was recognised by a polyclonal antibody directed towards human UDG. SDS-PAGE and western analysis indicate an apparent M(r) = 27,500. Bovine UDG has a 1.7-fold preference for single stranded over double stranded DNA as a substrate. Sequence specificity for uracil removal from dsDNA was examined for bovine and Escherichia coli UDG, using DNA containing less than one dUMP residue per 100 nucleotides and synthetic oligonucleotides containing one dUMP residue. Comparative studies involving about 40 uracil sites indicated similar specificities for both UDGs. We found more than a 10-fold difference in rates of uracil removal between different sequences. 5'-G/CUT-3' and 5'-G/CUG/C-3' were consensus sequences for poor repair whereas 5'-A/TUAA/T-3' was a consensus for good repair. Sequence specificity was verified in double stranded oligonucleotides, but not in single stranded ones, suggesting that the structure of the double stranded DNA helix has influence on sequence specificity. Rate of uracil removal appeared to be slightly faster from U:A base pairs as compared to U:G mis-matches. The results indicate that sequence specific repair may be a determinant to be considered in mutagenesis.  相似文献   

14.
Uracil-DNA glycosylase (UDG) is responsible for the removal of uracil from DNA. It has previously been demonstrated that UDG exhibits some sequence dependence in its activity, although this has not been well characterised. This study has investigated the sequence-dependent activity of UDG from herpes simplex virus type-1 (HSV-1). A more detailed analysis has been possible by using both kinetic and binding assays with a variety of different oligonucleotide substrates. The target uracil has been placed in substrates with either A-T-rich or G-C-rich flanking sequences and analyses have been performed on both the single- and double-stranded forms of each substrate. In the latter the uracil has been placed in both a U·A base pair and a U·G mismatch. It is observed that the sequences flanking the target uracil have a greater effect on UDG activity than the partner base of the uracil. Furthermore, the sequence context effects extend to single-stranded DNA. Systematic examination of the kinetics and binding of UDG with these different substrates has enabled us to examine the origin of the sequence preferences. We conclude that the damage recognition step in the HSV-1 UDG reaction pathway is modulated by local DNA sequence.  相似文献   

15.
The DNA repair enzyme uracil DNA glycosylase (UDG) utilizes base flipping to recognize and remove unwanted uracil bases from the genome but does not react with its structural congener, thymine, which differs by a single methyl group. Two factors that determine whether an enzyme flips a base from the duplex are its shape and hydrogen bonding properties. To probe the role of these factors in uracil recognition by UDG, we have synthesized a DNA duplex that contains a single difluorophenyl (F) nucleotide analogue that is an excellent isostere of uracil but possesses no hydrogen bond donor or acceptor groups. By using binding affinity measurements, solution (19)F NMR, and solid state (31)P[(19)F] rotational-echo double-resonance (REDOR) NMR measurements, we establish that UDG partially unstacks F from the duplex. However, due to the lack of hydrogen bonding groups that are required to support an open-to-closed conformational transition in UDG, F cannot stably dock in the UDG active site. We propose that F attains a metastable unstacked state that mimics a previously detected intermediate on the uracil-flipping pathway and suggest structural models of the metastable state that are consistent with the REDOR NMR measurements.  相似文献   

16.
Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.  相似文献   

17.
Dynamic opening of DNA during the enzymatic search for a damaged base   总被引:7,自引:0,他引:7  
Uracil DNA glycosylase (UDG) removes uracil from U.A or U.G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack. A question in enzymatic DNA repair is whether UDG and related glycosylases also use an extrahelical recognition mechanism to inspect the integrity of undamaged base pairs. Using NMR imino proton exchange measurements we find that UDG substantially increases the equilibrium constant for opening of T-A base pairs by almost two orders of magnitude relative to free B-DNA. This increase is brought about by enzymatic stabilization of an open state of the base pair without increasing the rate constant for spontaneous base pair opening. These findings indicate a passive search mechanism in which UDG uses the spontaneous opening dynamics of DNA to inspect normal base pairs in a rapid genome-wide search for uracil in DNA.  相似文献   

18.
Shaw RW  Feller JA  Bloom LB 《DNA Repair》2004,3(10):1273-1283
Uracil DNA glycosylase (UDG) excises uracil from DNA to initiate repair of this lesion. This important DNA repair enzyme is conserved in viruses, bacteria, and eukaryotes. One residue that is conserved among all the members of the UDG family is a phenylalanine that stacks with uracil when it is flipped out of the DNA helix into the enzyme active site. To determine what contribution this conserved Phe residue makes to the activity of UDG, Phe-77 in the Escherichia coli enzyme was mutated to three different amino acid residues, alanine (UDG-F77A), asparagine (UDG-F77N), and tyrosine (UDG-F77Y). The effects of these mutations were measured on the steady-state and pre-steady-state kinetics of uracil excision in addition to enzyme.DNA binding kinetics. The overall excision activity of each of the mutants was reduced relative to the wild-type enzyme; however, each mutation gave rise to a different kinetic phenotype with different effects on substrate binding and catalysis. The excision activity of UDG-F77N was the most severely compromised, but this enzyme still bound to uracil-containing DNA at about the same rate as wild-type UDG. In contrast, the decrease in the excision activity of UDG-F77A is likely to reflect a greater reduction in uracil-DNA binding than in the catalytic step. Overall, the effects of the mutations on catalysis are best correlated with the polarity of the substituted residue such that an increase in polarity decreases the efficiency of uracil excision.  相似文献   

19.
The DNA repair enzyme uracil DNA glycosylase (UDG) pinches the phosphodiester backbone of damaged DNA using the hydroxyl side chains of a conserved trio of serine residues, resulting in flipping of the deoxyuridine from the DNA helix into the enzyme active site. We have investigated the energetic role of these serine-phosphodiester interactions using the complementary approaches of crystallography, directed mutagenesis, and stereospecific phosphorothioate substitutions. A new crystal structure of UDG bound to 5'-HO-dUAAp-3' (which lacks the 5' phosphodiester group that interacts with the Ser88 pinching finger) shows that the glycosidic bond of dU has been cleaved, and that the enzyme has undergone the same specific clamping motion that brings key active site groups into position as previously observed in the structures of human UDG bound to large duplex DNA substrates. From this structure, it may be concluded that glycosidic bond cleavage and the induced fit conformational change in UDG can occur without the 5' pinching interaction. The S88A, S189A, and S192G "pinching" mutations exhibit 360-, 80-, and 21-fold damaging effects on k(cat)/K(m), respectively, while the S88A/S189A double mutant exhibits an 8200-fold damaging effect. A free energy analysis of the combined effects of nonbridging phosphorothioate substitution and mutation at these positions reveals the presence of a modest amount of strain energy between the compressed 5' and 3' phosphodiester groups flanking the bound uridine. Overall, these results indicate a role for these serine-phosphodiester interactions in uracil flipping and preorganization of the sugar ring into a reactive conformation. However, in contrast to a recent proposal [Parikh, S. S., et al. (2000) Proc Natl. Acad. Sci. 94, 5083], there is no evidence that conformational strain of the glycosidic bond induced by serine pinching plays a major role in the 10(12)-fold rate enhancement brought about by UDG.  相似文献   

20.
Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of deoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We have determined the crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号