首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Suppression of host cell function by treatment with actinomycin D prior to infection prevented the induction of defective interfering particles of vesicular stomatitis virus, which had been cloned and propagated in cell pretreated with actinomycin D. Replication of defective interfering particles already present in an infecting virus stock, however, was not affected by pretreatment of cells with actinomycin D. Thus, the induction, but not the replication, of defective interfering particles appears to be a host cell function-dependent phenomenon. The implications of this phenomenon for host defense mechanisms against virus infections are discussed.  相似文献   

3.
Whereas defective interfering particles of Sindbis virus are readily produced in BHK-21 cells or chicken embryo fibroblasts by the techniques of serial undiluted passage, similar methods failed to generate such particles in Aedes albopictus cell cultures. In addition, Sindbis virus stocks produced in BHK-21 cells or chicken embryo fibroblasts and which contained defective interfering particles, when tested in A. albopictus cells, failed (i) to interfere with the replication of standard Sindbis virus and (ii) to change the pattern of intracellular viral RNA synthesis from that produced by infection with standard Sindbis virus alone. We conclude that defective interfering particles of Sindbis virus generated in chicken or hamster cells are silent or inert in mosquito cells.  相似文献   

4.
We describe the characterization of 34 hybrid lambda bacteriophages carrying EcoRI fragments obtained from DNA of defective interfering particles of the Patton strain of Herpes simplex virus type 1 (HSV-1). All cloned fragments contained S region terminal repeat sequences (TRs) fused to unique HSV-1 DNA. Several fragments contained deletions and rearrangements not described previously for DNA of HSV-1 defective interfering particles. A model describing the generation of defective interfering DNA based on recombination events involving the terminal "a" sequence as presented.  相似文献   

5.
Nine measles vaccine preparations, including four different viral strains, provided by eight different manufacturers were analysed by Northern blot for the nature of their nucleocapsid RNAs. Out of nine preparations, six were shown to contain subgenomic RNAs, along with the full length genomic RNA. Presence or absence of the subgenomic RNAs correlated strictly with the viral strains used. The role of the defective interfering particles in measles virus vaccine attenuation, and in its seroconversion efficacy upon vaccination, as well as the potential hazard of the presence of defective interfering particles in live-virus vaccine preparations, is discussed.  相似文献   

6.
Virus mutants isolated from persistent infections of vesicular stomatitis virus in BHK-21 cells were much less susceptible to interference mediated by the defective interfering particle used to establish the persistent infection. This mutational change occurred as early as 34 days in the persistent infection and continued for over 5 years. The earliest variants showed no oligonucleotide map changes and no difference in the temperature-sensitive phenotype from the original virus, but the later variants exhibited extensive map changes. These results suggest a possible role for defective interfering particles in the selection of the mutants.  相似文献   

7.
Oligonucleotide mapping studies of the RNA from standard and defective interfering particles of Sindbis virus demonstrate that 3'- and 5'-terminal regions of the genome are conserved in the defective RNAs. These studies also suggest that defective RNAs contain multiple deletions.  相似文献   

8.
Defective interfering particles of Sindbis virus contain 20S RNA identical to that found in BHK cells co-infected with standard and defective virions. We have characterized these RNAs by their oligonucleotide fingerprints. Most of the oligonucleotides were identical to those found in the mRNA (26S RNA) that codes for the virion structural proteins. Three oligonucleotides found in 20S RNA were absent from the 26S RNA pattern and may represent sequences from the 5' end of the virion RNA. Previous difficulties in describing the nature of the defective virion RNA were due to the aggregated state of the RNA. Nucleocapsids obtained from standard and defective virions were essentially the same size and had about the same density, suggesting that defective particles contain more than a single molecule of 20S RNA.  相似文献   

9.
A method for estimating the number of defective interfering virus particles in a virus sample is presented. It can be used whenever the interference results in the survival of the “interfered” cell. The analysis assumes only that the infectious virus and defective interfering particles are distributed randomly and independently to cells. Thus the proportion of cells receiving X = x virus and Y = y particles is the product of the two independent Poisson distribution terms. The two dimensional matrix (X values × Y values) that can be constructed encompasses all of the possible (cellular) outcomes of viral infection. By comparing the actual number of surviving cells with the number predicted by various models of interference, it is possible to determine whether defective interfering particles are dominant (completely or partially) to infectious virus, and to estimate their number in the virus sample. This is accomplished by determining the experimental survival curve (% survival vs. input infectious virus/cell) and then constructing theoretical curves to fit the data.  相似文献   

10.
Analysis of the RNA of defective VSV particles   总被引:34,自引:0,他引:34  
Viral mRNA isolated from infected cells and the virion RNA isolated from two classes of defective interfering particles have been analyzed by RNA-RNA duplex reactions. The results show that the RNA of both defective interfering particles is viral, not host in origin. The RNA isolated from the two defective particles represents homogeneous populations of molecules containing only part of the genetic information present in the whole VSV genome. Annealing competition experiments indicate that if any overlap exists between the two, it is less than 220 nucleotides. We conclude from the data presented that a rudimentary physical map of the VSV and DI particle genomes is
Our results suggest that there is not a single specific site that is required for autointerference.  相似文献   

11.
Li D  Lott WB  Lowry K  Jones A  Thu HM  Aaskov J 《PloS one》2011,6(4):e19447
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.  相似文献   

12.
A stock of plaque-purified Pichinde virus, prepared under conditions designed to limit the amounts of defective interfering virus, was used to infect BHK cells. At daily intervals after infection, cells were examined for infectious and radiolabeled virus particle production and for the synthesis of virus-specific polypeptides. Quantitative comparisons were also made of the concentrations of genomic Pichinde virus L and S RNAs in the cytoplasm of infected cells on different days after infection. Our results showed that virus particle production, rates of protein synthesis, and the intracellular levels of viral genomic RNAs all increased and decreased with similar kinetics, and that this regulation was independent of the cell growth cycle. We were unable to relate these changes in viral macromolecule and virus production to the appearance of readily identifiable defective interfering particles. Our findings suggest that regulation of virus replication early during the replicative cycle of Pichinde virus may not be dependent upon the generation of defective interfering virus.  相似文献   

13.
To see the effects of temperature on the interrelated cyclic production of standard and defective interfering (DI) particles of vesicular stomatitis virus, a temperature-sensitive (ts) G114 mutant was passaged successively at different temperatures and the production of the two types of viral particles as well as the ability of Chinese hamster ovary cells to survive each passage was continuously monitored. When the temperature was nonpermissive for standard virus, the synthesis of both standard and defective interfering particles was inhibited. When revertants appeared in the population, their ability to take over the infection depended on the permissiveness of the temperature for the temperature-sensitive mutant. At permissive temperatures periodic inhibition of both types of standard viruses was maintained by the production of defective interfering particles. Reverents did not become a majority of the population due to this periodic inhibition. When the conditions were nonpermissive for the mutant, revertants became the major standard virus in the population within a few passages. These findings can be understood if conditions of high and low multiplicities are dissected out together with a thorough understanding of the individual properties of each of the viral particles and of the result of interactions between them. In the presence of antiserum which neutralized only 90% of the viral particles, cyclic production of standard virus occurred, with a decline in the total amount of virus produced after each cycle. Therefore, in the presence of limiting concentrations of antiserum, the virus appeared to be able to establish a persistent cyclic growth pattern.  相似文献   

14.
Replication-defective viruses modulate immune responses.   总被引:3,自引:0,他引:3  
By immunizing inbred mice with purified replication-competent, defective virus particles, or an admixture of the two, differential effects on the cellular immune system have been uncovered. Defective virus, exemplified by the vesicular stomatitis virus (VSV) defective interfering particle (DI 0.33), induced in BALB/c mice low levels of proliferating, IL-2 secreting, and cytolytic Ag-specific T lymphocytes. This was not caused by a dominant suppressor cell response, or by a failure to stimulate lymphokine-secreting cells, but appeared to reflect a reduced efficiency of priming as compared with standard virus. Mice primed with a mixture of wt and DI virus showed reduced proliferation compared with mice primed with wt virus. When histocompatible target cells were sensitized by pure DI particles, they were neither recognized nor lysed by CD8+ CTL. Cells co-infected with wt and DI particles were not as readily lysed by CD8+ CTL as cells infected by VSV alone. The extent of this reduction was dependent on the concentration of DI particles. This suggests that DI particles may have prevented the proper presentation of endogenously synthesized Ag for recognition by CD8+ CTL. Metabolic labeling studies indicated that the presence of DI particles suppressed the synthesis of viral proteins in dually infected cells. However, CD4+ T lymphocyte clones recognized and efficiently lysed histocompatible Ia+ cells infected with DI particles alone or co-infected with replication-competent and defective virus.  相似文献   

15.
Lymphocytic choriomeninigitis (LCM) virus defective interfering (DI) particles form foci of protected cells in a monolayer under an agarose-containing overlay medium. Foci originate from one cell dually infected with at least 1 interference focus-forming unit and infectious virus. As a result, an interfering factor is produced and released which interacts with neighboring cells, thereby protecting them against cytopathic lysis by challenge virus. The property of individual LCM virus DI particles to induce countable foci has been made the basis of quantitative assay that is comparable in every respect to the plaque assay of infectious virus and is much more sensitive and probably more accurate than other procedures used to measure LCM virus DI particles. LCM virus was passaged, undiluted, 10 times in cell cultures. When yields were analyzed as to concentrations of PFU and interference focus-forming units, both entities were found to fluctuate with the pattern expected from theoretical considerations.  相似文献   

16.
Restriction mapping and nucleotide sequence analysis of several defective, interfering particles of bacteriophage f1 are described. These particles contain the nucleotide sequences corresponding to the carboxyl terminus of gene IV and the amino-terminus of gene II and the intergenic space between them. Tandem duplication of a portion of this intergenic space generates defective particles with novel nucleotide sequences not found in wild-type f1. This duplication is shown to contain the origin of complementary strand synthesis. Our results suggest that the duplication occurs at the site of gene II protein action, i.e. the origin of viral strand synthesis. A model is presented for the generation of these duplications in defective particles.  相似文献   

17.
We analyzed a BHK cell line persistently infected with Sindbis virus for 16 months and a virus (Sin-16) cloned from these cells. Sin-16 virus was resistant to the defective interfering particles present in the original infection. We found that (i) cells infected with Sin-16 were impaired in the processing of a viral precursor glycoprotein, (ii) high-multiplicity passaging of Sin-16 gave rise to a variant that was able to generate and be inhibited by defective-interfering particles to which the original Sin-16 virus was resistant, and (iii) the persistently infected culture contained a heterogeneous mixture of defective Sindbis virus RNAs which were not packaged into extracellular particles. To determine whether these intracellular RNAs could interfere with the replication of Sin-16, we analyzed cells that were cloned from the persistently infected culture. One clone (A3) synthesized a single defective viral RNA which was lost with continued passaging in culture. Infection of A3 cells with Sin-16 showed that the presence of the defective RNA greatly enhanced cell survival and led to enrichment of this RNA. In contrast, cured cells were highly susceptible to killing by Sin-16, and survivors did not synthesize this RNA. Thus, A3 cells were not genetically altered in their response to Sin-16, but were protected from the cytopathic effects of infection by an RNA with the characteristics of a defective-interfering RNA.  相似文献   

18.
The intracellular defective RNAs generated during high-multiplicity serial passages of mouse hepatitis virus JHM strain on DBT cells were examined. Seven novel species of single-stranded polyadenylic acid-containing defective RNAs were identified from passages 3 through 22. The largest of these RNAs, DIssA (molecular weight [mw], 5.2 X 10(6)), is identical to the genomic RNA packaged in the defective interfering particles produced from these cells. Other RNA species, DIssB1 (mw, 1.9 X 10(6) to 1.6 X 10(6)), DIssB2 (mw, 1.6 X 10(6)), DIssC (mw, 2.8 X 10(6)) DIssD (mw, 0.82 X 10(6)), DIssE (mw, 0.78 X 10(6)), and DIssF (mw, 1.3 X 10(6)) were detected at different passage levels. RNase T1-resistant oligonucleotide fingerprinting demonstrated that all these RNAs were related and had multiple deletions of the genomic sequences. They contained different subsets of the genomic sequences from those of the standard intracellular mRNAs of nondefective mouse hepatitis virus JHM strain. Thus these novel intracellular viral RNAs were identified as defective interfering RNAs of mouse hepatitis virus JHM strain. The synthesis of six of the seven normal mRNA species specific to mouse hepatitis virus JHM strain was completely inhibited when cells were infected with viruses of late-passage levels. However, the synthesis of RNA7 and its product, viral nucleoprotein, was not significantly altered in late passages. The possible mechanism for the generation of defective interfering RNAs was discussed.  相似文献   

19.
The A/Chicken/Pennsylvania/1/83 influenza virus, isolated from a respiratory infection of chickens, is an avirulent H5N2 virus containing subgenomic RNAs (W.J. Bean, Y. Kawaoka, J.M. Wood, J.E. Pearson, and R.G. Webster, J. Virol. 54:151-160, 1985). We show here that defective interfering particles are present in this virus population. The virus had a low ratio of plaque-forming to hemagglutinating units and produced interference with standard virus multiplication in infectious center reduction assays. Subgenomic RNAs were identified as internally deleted polymerase RNAs. We have confirmed that this virus protects chickens from lethal H5N2 influenza virus infection. This protective effect appeared to be due to the inhibition of virulent virus multiplication. Additionally, subgenomic RNAs derived from polymerase RNAs were detected in 5 of 18 RNA preparations from animal influenza virus isolates. Therefore, defective interfering particles are sometimes produced in natural influenza virus infections, not just under laboratory conditions. These particles may be capable of suppressing the pathogenic effect of virulent virus infections in nature.  相似文献   

20.
Persistent infections were established by serial undiluted passage of flavivirus Japanese encephalitis virus in a line of rabbit kidney cells (MA-111). The persistently infected cells resembled uninfected cells in most respects. Low levels of infectious virions were released from a small percentage of cells, and a larger and more variable percentage was shown to possess viral antigen by fluorescent-antibody staining. Released viruses were shown to interfere with replication of wild-type Japanese encephalitis virus. Persistently infected MA-111 cells could not be superinfected with homologous wild-type Japanese encephalitis virus but could be superinfected with two heterologous viruses. Transfer of cell culture medium from persistently infected MA-111 cells to a line of African green monkey kidney cells (Vero) resulted in similar persistent infections in the latter cells. Temperature sensitivity and host-cell interferon production were not involved in establishment or maintenance of persistence. Determination of ratios of physical particles to infectious particles revealed that many defective, noninfectious viruses were present, suggesting that defective interfering particles may be responsible for persistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号