首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RATE AND TIME OF DNA SYNTHESIS OF INDIVIDUAL CHINESE HAMSTER CELLS   总被引:1,自引:0,他引:1  
The duration of DNA synthesis of a diploid cell line of Chinese hamster fibroblasts was determined in a comparative study by the FLM technique, and also by a new technique for measuring the rate of DNA synthesis of individual cells. These methods produced comparable results when applied during exponential growth of the cells. The rate of DNA synthesis was measured by means of quantitative autoradiography following a short-term incubation of the cells with 5 × 10-6 M FUdR and 10-5 M 14C-TdR. The choice of the medium for this purpose did not seem to be critical. The autoradiographic silver grains over cells and 14C-standard sources are counted by microphotometry using incident light bright-field. The direct measurements of DNA synthesis rate are ‘compartment’ statistics which have been converted into ‘flux’ parameters for comparison with the FLM method and applicability in cell-kinetic calculations. Frequency distributions of the rate of DNA synthesis of individual cells thus obtained may resemble normal distributions quite closely. They result from several factors: differences in the rate of synthesis in different parts of the S-phase, the density distribution of cells within the S-phase, the variation in the time of DNA synthesis among individual cells, and the experimental error. In the case of a pronounced partial synchronization as probably has been present in one experiment performed in the lag phase, an incorrect time of DNA synthesis may result from the rate values. Due to the variation in DNA synthesis rate in different parts of the S-phase it is not possible to determine the duration of DNA synthesis of an individual cell. However, the mean values of DNA synthesis time are reliable. The new method will be preferentially applied for determining the duration of DNA synthesis of human cells in as far as difficulties are encountered with the classical methods. In addition, it may be used to advantage for studying cells which make up low percentages in mixed populations. It finally permits a safer morphological classification of the cells under study than is possible with the classical methods.  相似文献   

2.
Analysis of DNA synthesis rate of cultured cells from flow cytometric data   总被引:1,自引:0,他引:1  
The rate of DNA synthesis along S phase is estimated from flow cytometric histograms on the basis of a mathematical model of a cell population. In the absence of loss, the model expresses the population kinetics in terms of DNA synthesis rate, S-phase influx, and population size. A single histogram is sufficient to determine the DNA synthesis rate when the population is in balanced exponential growth. Two suitably chosen histograms are necessary if the S-phase influx is exponential in a time interval longer than the S-phase duration. The analysis procedure was tested on published autoradiographic data and applied to three cultured cell lines (CM-S, 3LL, and M14 cells) that show various patterns of DNA distribution. In each case the cell-cycle fractions, the DNA synthesis rate, and the S-phase duration were obtained.  相似文献   

3.
Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle.  相似文献   

4.
L-cells synchronized by mitotic selection were investigated by flow-cytometry and the fractions of cells in the various cell cycle compartments were determined as a function of time. A new analytical evaluation procedure was developed, by which the mean transit-times of cells through various cell cycle phases can be calculated from these data. Three examples for application of the method are presented: (1) determination of the duration of G1, S, G2 + M and of the whole cell cycle; (2) calculation of the rate of DNA synthesis in several subcompartments of the S-phase; and (3) evaluation of the degree of synchronization at different stages of the cell cycle.  相似文献   

5.
Mean transit times as well as variances of the transit times through the individual phases of the cell cycle have been determined for the crypt epithelial cells of the jejunum of the mouse. To achieve this the fraction of labelled mitoses (FLM) technique has been modified by double labelling with [3H] and [14C]thymidine. Mice were given a first injection of [3H]thymidine, and 2 hr later a second injection of [14C]thymidine. This produces a narrow subpopulation of purely 3H-labelled cells at the beginning of G2-phase and a corresponding subpopulation of purely 14C-labelled cells at the beginning of the S-phase. When these two subpopulations progress through the cell cycle, one obtains FLM waves of purely 3H- and purely 14C-labelled mitoses. These waves have considerably better resolution than the conventional FLM-curves. From the temporal positions of the observed maxima the mean transit times of the cells through the individual phases of the cycle can be determined. Moreover one obtains from the width of the individual waves the variances of the transit times through the individual phases. It has been found, that the variances of the transit times through successive phases are additive. This indicates that the transit times of cells through successive phases are independently distributed. This statistical independence is an implicit assumption in most of the models applied to the analysis of FLM curves, however there had previously been no experimental support of this assumption. A further result is, that the variance of the transit time through any phase of the cycle is proportional to the mean transit time. This implies that the progress of the crypt epithelial cells is subject to an equal degree of randomness in the various phases of the cycle.  相似文献   

6.
The duration of DNA synthesis in the salivary gland cells of Chironomus thummi larvae of the IV instar was determined by means of autoradiography and cytophotometry. Cells of different levels of ploidy differ in the duration of their DNA synthesis period. The tS of 2(10)c and 2(11)c cells was equal to 17 and 22 hours, respectively. The doubling of DNA content of the chironomid salivary gland cells leads to a 1.3 time increase in the duration of S-phase.  相似文献   

7.
Abstract. In this report we describe the successful application of a novel microscope-based multiparameter laser scanning cytometer (LSC) to measure duration of different phases of cell cycle in HL-60 human leukaemic cell lines by the fraction of labelled mitoses (FLM) method. Exponentially growing cells were harvested after various time intervals following pulse-labelling with 5'-bromo-2'-deoxyuridine (BrdUrd), cytocentrifuged, fixed in ethanol, and then exposed to UV light to induce DNA strand breaks at the sites of incorporated BrdUrd. The 3'OH termini of the photolytically generated DNA strand breaks were labelled with BrdUTP in the reaction catalysed by exogenous terminal deoxynucleotidyl transferase (TdT), followed by FITC-labelled BrdUrd antibodies. DNA was counterstained with propidium iodide (PI). Due to differences in chromatin structure between the interphase and mitotic cells, the LSC identified the latter by virtue of their higher red (PI) fluorescence intensity values among all pixels over the measured cell. To confirm that the cells selected were indeed cells in mitosis, predominantly in metaphase, the recorded X-Y coordinates of selected cells were used to re-position the cell for their visual examination. From the time lapse analysis of percentage BrdUrd-labelled cells progressing through mitosis it was possible to calculate the duration of individual phases of the cell cycle. The duration of S (Ts) and G2+ M (TG2+M) was 8 and 3 h, respectively, and the minimal duration of G2 (TG2) was 2 h. The cell cycle time (Tc) estimated for the cohort of the most rapidly progressing cells was 13 h. The ability to automatically and rapidly discriminate mitotic cells combined with the possibility of their subsequent identification by image analysis makes LSC the instrument of choice for the FLM analysis.  相似文献   

8.
Zusammenfassung Nach Hemmung der de novo-Synthese von TMP durch 5-F-UdR läuft die DNS-Synthese in vitro in Anwesenheit von 10–5 M/l mit unveränderter Geschwindigkeit ab. Dadurch ist die DNS-Synthese-Dauer über die quantitative autoradiographische Messung des 14C-TdR-Einbaus bestimmbar. Diese in vitro-Methode wird an Rattenknochenmark und Zellen einer CML geprüft. Erste Ergebnisse zeigen eine gute Übereinstimmung mit in vivo-Messungen durch andere Methoden.
In vitro determination of the duration of DNA synthesis of individual cells
Summary Suspended haemopoietic cells are incubated in the presence of 5-fluoro-deoxyuridine (5-F-UdR) as an inhibitor of the de novo synthesis of thymidine monophosphate (TMP). The DNA synthesis rate remains undisturbed, if 10–5 M/l thymidine (TdR) is added. Thus, the DNA synthesis rate of individual cells can be determined by means of a quantitative autoradiographic method in measuring the incorporation rate of 14C-TdR into the DNA of the cells. DNA synthesis rates are then converted into DNA synthesis times. This in vitro method has been checked in cells of rat bone marrow and of peripheral blood in a case of chronic myelocytic leukaemia (CML). Preliminary results correlate well with in vivo estimations obtained by other methods.


Studie im Rahmen des Assoziationsvertrages EURATOM-GSF für Hämatologie Nr. 031 641 BIAD

Unterstützt durch die Deutsche Forschungsgemeinschaft: SFB 51/5  相似文献   

9.
L-cells synchronized by mitotic selection were investigated by flow-cytometry nd the fractions of cells in the various cell cycle compartments were determined as a function of time. A new analytical evaluation procedure was developed, by which the mean transit-times of cells through various cell cycle phases can be calculated from these data. Three examples for application of the method are presented: (1) determination of the duration of G1, S, G2+ M and of the whole cell cycle; (2) calculation of the rate of DNA synthesis in several subcompartments of the S-phase; and (3) evaluation of the degree of synchronization at different stages of the cell cycle.  相似文献   

10.
The effects of cisplatin on the cell cycle and DNA synthesis of human lung adenocarcinoma cell line PC-9 were examined by flow cytometry. The cellular DNA content and the bromodeoxyuridine (BrdUrd) incorporation rate were measured simultaneously using a monoclonal anti-BrdUrd antibody. Following exposure to cisplatin (1.0 micrograms/ml) for 1 and 24 hr, the bivariate DNA/BrdUrd distributions revealed a delayed S-phase transit and an accumulation of cells in the G2M phase. The BrdUrd-linked green fluorescence intensity continued to decrease with the lapse of time. However, early- and mid-S-phase cells soon recovered DNA synthesis activity, and the former showed higher activity than the control cells. These findings suggested the vigorous DNA synthesis of cells in early S phase. However, for quantitative analysis of chemotherapeutic effects, some problems remained to be resolved regarding the condition for DNA denaturation and its alteration by the agents.  相似文献   

11.
Cell populations pulse-labelled with BrdUrd, and sampled at increasing times after the pulse, yield DNA-BrdUrd distributions from which the relative movement (RM) and the depletion function (DF) of labelled, undivided cells can be calculated. In this paper we present an extension of the equation for the time course of RM, given by White and Meistrich (Cytometry 1986, 7 , 486–490), to the case in which the rate of DNA synthesis changes across S-phase. Some modalities of cell loss were also considered. Computer simulations showed that different patterns of DNA synthesis rate across S-phase can result in appreciably different RM curves. An analytical expression of the RM curve, in which the variability across S-phase of the rate of DNA synthesis is accounted for by only one parameter, was proposed. This expression was used for the simultaneous fitting of time sequences of RM and DF data of U937 cells, in order to estimate the phase transit times TS and TG2+M, and the potential doubling time Tpot. The use of the extended model gave better results than those obtained under the assumption of constant rate of DNA synthesis across S-phase.  相似文献   

12.
Incorporation of 3H-thymidine during organ culture was studied in duodenal biopsies from 14 patients. Pulse-label at various intervals disclosed active incorporations during the first 2 h in culture. Labelling index declined to low levels at 3-4 h. Thereafter incorporation increased again and persisted throughout the rest of the culture period of 11 h. The DNA synthesis rate of crypt cells between 4 and 11 h in culture was calculated in 5 patients after pulse-label and continuous labelling of explants in parallel culture. The rate of entry into DNA synthesis was about 24 cells per 1,000 crypt cells per hour in flat, coeliac biopsies, versus 9-13 in controls, Gluten did not influence DNA synthesis rate, whereas wheat germ lectin inhibited DNA synthesis. Counting of the total number of mitoses and labelled fraction of mitoses disclosed active crypt cell renewal in flat, coeliac biopsies. In normal-appearing biopsies no mitoses were labelled, indicating delayed exit from S-phase or long duration of G2-phase in these explants.  相似文献   

13.
Mouse fibroblast L-929 cells synchonized by mitotic selection were irradiated during the G1-phase of the cell cycle with a dose of 1000 rad. The rat of DNA synthesis was measured by 3H-thymidine incorporation, and the progression of the cells through the cell cycle was determined using a pulse-cytophotometer. Irradiation caused a decrease in the rate of DNA synthesis to half the control value, and an extension of the S-phase to twice its normal duration.  相似文献   

14.
Although ataxia telangiectasia (AT) cells are more sensitive than normal cells to killing by ionizing radiation, their DNA synthesis is more resistant to inhibition by radiation. It was thought that this anomaly in DNA synthesis was likely to perturb cell cycle progression. Flow cytometry and the fraction of labelled mitoses (FLM) were used to investigate effects of irradiation in normal and AT cell lines. The FLM indicated that radiation apparently induced a longer G2 delay in normal cells than in AT cells. However, flow cytometry showed that radiation induced much larger and more prolonged increases in the proportion of G2 cells in AT than in normals. AT populations also showed much larger postirradiation decreases in viable cell numbers. These data suggest that a large proportion of the radiosensitive AT cells are not reversibly blocked in G2 but die there, and never proceed through mitosis. The less radiosensitive normal cells are delayed in G2 and then proceed through mitosis. We suggest that the apparently shorter radiation-induced mitotic delay seen in AT cells by FLM is not real but is an artifact arising from perturbation of steady state conditions by selective elimination of a particular cohort of AT cells. Accumulation of AT cells in G2 is compatible with radiosensitivity of these cells and may arise from a defect in DNA repair or an anomaly in DNA replication.  相似文献   

15.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

16.
Replication stress is a major source of DNA damage and an important driver of cancer development. Replication intermediates that occur upon mild forms of replication stress frequently escape cell cycle checkpoints and can be transmitted through mitosis into the next cell cycle. The consequences of such inherited DNA lesions for cell fate and survival are poorly understood. By using time-lapse microscopy and quantitative image-based cytometry to simultaneously monitor inherited DNA lesions marked by the genome caretaker protein 53BP1 and cell cycle progression, we show that inheritance of 53BP1-marked lesions from the previous S-phase is associated with a prolonged G1 duration in the next cell cycle. These results suggest that cell-to-cell variation in S-phase commitment is determined, at least partially, by the amount of replication-born inherited DNA damage in individual cells. We further show that loss of the tumor suppressor protein p53 overrides replication stress-induced G1 prolongation and allows S-phase entry with excessive amounts of inherited DNA lesions. Thus, replication stress and p53 loss may synergize during cancer development by promoting cell cycle re-entry with unrepaired mutagenic DNA lesions originating from the previous cell cycle.  相似文献   

17.
Two prostaglandins, prostaglandin E1 (PGE1) and prostaglandin B1 (PGB1), block S-phase DNA synthesis in synchronous cultured baby hamster kidney (BHK) cells. The prostaglandin inhibition of DNA synthesis does not appear to require elevated levels of cAMP. In BHK-21 cells that have been "desensitized" to prostaglandin stimulation of adenylate cyclase and, therefore, have control levels of cAMP, PGE1 retains its inhibitory effect on the incorporation of tritiated thymidine into DNA. When BHK cells are exposed to PGB1 (a prostaglandin that does not elicit a cAMP response), DNA synthesis is also blocked. In nonsynchronous cells exposed for 1 h to PGE and then incubated for 1 h with PGE removed, a rebound of DNA synthesis occurs, therefore providing evidence that a transient rise of cAMP in itself is not capable of causing a cascade of reactions that block the synthesis of DNA. In addition, the concentration of PGE required for inhibition of DNA synthesis is significantly less than that required for cAMP generation. Addition of 1 x 10(-8) M PGE to BHK cells can be shown to significantly inhibit DNA synthesis within 30 min, with half-maximal inhibition seen at 3 x 10(-7) M PGE. Cyclic AMP levels for controls were 4.9 +/- 0.2 and 4.6 +/- 0.1 for 1 x 10(-6) M PGE1. These findings suggest that the prostaglandins can act independently of cAMP at physiological concentrations; and, therefore, it is possible that prostaglandins have a physiological role in the control of cell growth during S-phase.  相似文献   

18.
DNA distributions of HeLa S-3 cells in spinner culture exhibit significant time—dependent changes. The major differences appear to occur in the S-phase region. Significant changes in the rates of DNA synthesis in several S-phase subcompartments correlated well with the changes in the DNA distributions. It is proposed that fluctuations in these rates of DNA synthesis are a reflection of the inherent instability of these abnormal, heteroploid cells.  相似文献   

19.
The double-pulse labeling technique for DNA fiber autoradiography was applied to epidermal cells from normal human skin and from human basal cell carcinoma (BCC). We aimed to measure the size and replication rate of the replication unit (RU) for both types of cell and to account, from these results, for our previous observation of a near doubling of S-phase duration in BCC, compared with normal skin. The mean RU size was 76 +/- 4 micron in BCC, not significantly different from the 68 +/- 6 micron value found in normal skin, so the mean of those two values (i.e., 72 micron), was used in further calculations. The rate of replication fork progression was 0.59 +/- 0.005 micron/min in the normal epidermis and 0.33 +/- 0.03 micron/min in BCC, corresponding to a replication time of the average RU equal to 61 min and 109 min, respectively. Thus, with an unchanged RU size in BCC, the observed 1.8-fold decrease in the rate of fork progression in the tumor can account entirely for our previous observation of a 1.8-fold increase in S-phase duration in this tumor, without requiring the assumption of any change in the temporal organization of DNA synthesis in the malignant cells. Considering S phase as an ordered process in which a major part, if not all, of the genome replicates at genetically determined times, we suggest that the clusters of replication units are, in turn, organized into temporally defined "sets". These sets are composed of all the clusters (whatever their chromosomal location) that are programmed to initiate replication during the same fraction of the S period. This hypothesis implies that DNA synthesis in a given set is triggered by some event coupled to progression of replication in the immediately preceding set. Based on a S-phase duration of 10.2 hours in normal skin and of 19.2 hours in BCC (our previous data), and assuming perfect synchrony and homogeneity of the clusters within each set and of each cluster's constitutive RUs, the minimum number of sequentially replicating sets, in both instances, can be estimated as roughly equal to 10.  相似文献   

20.
Human cells deficient in rate of excision repair of DNA damage induced by UV-radiation, i.e., xeroderma pigmentosum (XP) cells, are much more sensitive to the mutagenic effect of UV than are cells from normal persons. The lower frequency of mutants in the latter cells has been attributed to the fact that, unlike XP cells, they excise most of the potentially mutagenic lesions before these can be converted into mutations. If semi-conservative DNA synthesis on a template still containing unexcised lesions is responsible for introducing mutations and if replication of the gene of interest, e.g., hypoxanthine (guanine)phosphoribosyltransferase (HPRT) for thioguanine resistance or the elongation factor 2 (EF-2) for diphtheria toxin resistance, occurs at a particular time during S-phase, it should be possible to shorten the time available for such repair by synchronizing cells and irradiating them just as the gene is to be replicated. The predicted result would be a much higher frequency of mutants at one part in the S-phase than at other times. To test this, cells were synchronized using the alpha-polymerase inhibitor aphidicolin, which blocks cells at the G1/S border. Autoradiography, cytofluorimetry, and incorporation of tritiated thymidine studies showed that DNA synthesis started immediately after release from aphidicolin and was completed in 8-10 h. Cells irradiated with 6 J/m2 at various times post-release were assayed for survival and mutations. The frequency of thioguanine- or diphtheria toxin-resistant cells in the population was highest in cells irradiated during the first fifth of the S-phase, i.e., 0-1.5 h post-release. It was significantly lower in cells irradiated at later times. In contrast, UV-induced cytotoxicity showed no significant time dependence during S-phase. These data suggest that the HPRT and EF-2 genes are replicated early in S-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号