首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of CN-insensitive respiration with low concentrationsof respiratory inhibitors was studied. If roots were treatedwith 10–3 M CN for 96 hr, the plants died, whilethose treated with 10–4 M CN showed healthy growth. O2 uptake in untreated rice and wheat roots showed a negativeresponse to 10–2 M CN to a considerable extent.On the other hand, pretreatment with 10–4 M CNfor more than 6 hr did not greatly affect respiratory rate,but made respiration insensitive to 10–2 M CN.A similar induction of CN-insensitivity was also broughtabout with 10–4 and 10–3 M H2S and 10–4 MNaN3. (Received July 6, 1971; )  相似文献   

2.
1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm–2sec–1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400–500 erg cm–2 sec–1) was citrulline.At higher light intensities (4,000–7,000 erg cm–2sec–1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; )  相似文献   

3.
No significant difference in respiratory activities was foundfor mitochondria isolated from CN-sensitive and CN-insensitiveroots. The increase in CN-insensitive respiration inducedby 10–4 M CN pretreatment was not influenced bychloramphenicol, but was partly reduced by cycloheximide. (Received October 16, 1972; )  相似文献   

4.
The effects of chloramphenicol and kinetin on uptake and incorporationof 35S-methionine and some 14C-amino acids have been investigatedin leaf-disks of Nicotiana rustica in light and dark. Chloramphenicolin a concentration of 1 mg per ml inhibits the uptake of aminoacids from 30 to 60 per cent compared with the water control.The incorporation of amino acids into bulk protein is stronglyinhibited in light (40 to 70 per cent), but only to a smalldegree in dark (10 to 20 per cent), as revealed also by 14CO2-photosynthesisof the disks and following treatment with chloramphenicol indark. The stimulating effect of kinetin on uptake and incorporationof amino acids is dependent upon its concentration (10–5to 10–6 M ; but 10–4 M solution inhibits stronglyboth uptake and incorporation). The stimulation seems to influencemore incorporation than uptake processes. Possible interactionsof chloramphenicol and kinetin in the protein metabolism oftobacco leaves have been discussed. (Received April 27, 1964; )  相似文献   

5.
The drop in protein level as an index of senescence in tobaccoleaf disks was examined in the dark in the presence of BA and/orinhibitors of protein synthesis. Cycloheximide at 10–6–10–5M and 10–5 g/ml actinomycin-D accelerated the senescenceand interfered with the anti-senescence action of 10–6M BA. Chloramphenicol (10–8– 10–4 M) and puromycin(10–8–10–4M) did not modify the senescenceor the action of BA. Cycloheximide was more effective at earlierstages of the dark culture of the disks. The rate of 14C-leucineincorporation into the protein fraction was increased by BAand decreased with senescence, and this drop was removed byBA. The incorporation was also suppressed by cycloheximide equallyin the presence and absence of BA. The drop in labeled proteinof the disks during the chasing period was retarded by not onlyBA but cycloheximide also. The conclusion reached, based onthese and relevant findings, was that BA affects the anti-senescenceaction by promoting synthesis and at the same time inhibitingdegradation of protein. (Received December 2, 1974; )  相似文献   

6.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

7.
In azuki bean (Azukia angularis = Vignia angularis) epicotylsections, 5 ? 10–4 M coumarin inhibited the incorporationof radioactivity from [U–14C]glucose into the cellulosefraction by 35% in the absence of indole-3-acetic acid (IAA)and by 40% in the presence of 1 ? 10–4 M IAA. There wasno inhibitory effect on the incorporation of radioactivity intothe other fractions. Coumarin at 5 ? 10–4 M reversed thepromoting effect of 1 ? 10–5 M gibberellin A3 (GA) andthe inhibitory effect of 1 ? 10–5 M kinetin on IAA-inducedelongation of sections with no significant effects on IAA-inducedelongation. Neither GA nor kinetin had any appreciable effectson cellulose synthesis. No inhibition of cellulose syntheiswas observed with 1 ? 10–3 M colchichine, which has beenreported to have effects similar to those of coumarin on GA-or kinetin-affected stem elongation. Coumarin at 5 ? 10–4M was ineffectual in breaking up wall microtubules, while adisrupting effect on wall microtubules was clearly demonstratedwith 3 ? 10–4M colchicine. From these results, the possible involvement of cellulose synthesisin cell expansion controlled by GA or kinetin was suggested. (Received August 3, 1973; )  相似文献   

8.
The kinetics of 14C-2-acetate assimilation by Chlorella pyrenoidosain the light were examined. Under aerobic conditions the primaryproduct of acetate assimilation was succinic acid which, afterten seconds, contained over 60 per cent of the 14C incorporatedby the cells. The percentage of the total 14C in succinate fellwith time, while that in citrate and glutamate increased. After1800 sec over 60 per cent of 14C was present in two compounds,glutamic acid and an unknown compound (X). Glucose-6-phosphate,fructose-6-phosphate, phosphoglyceric acid and phosphoenolpyruvicacid became labelled after 60 sec but together never containedmore than one per cent of the total 14C incorporated. Underanaerobic conditions succinate was still the primary productof acetate assimilation, and the absence of carbon dioxide resultedin a decrease in 14C incorporation into compound X. The patternof acetate assimilation in acetate grown and acetate adaptedChlorella was very similar to that in photo-autotrophicallygrown Chlorella. In the presence of 10–6M DCMU, succinicacid was the primary product of acetate assimilation, but therewas an early Incorporation of 14C into glutamate, aspartate,and malate. 4 x10–3M MFA did not effect the early incorporationof 14C into succinic acid, but resulted in accumulation of 14Cin citrate and a decreased amount in glutamate and in compound X.  相似文献   

9.
Seedlings from Euphorbia canariensis and Euphorbia lambii weregrown in the dark at 25 °C. Protein and triglyceride contentas well as levels of sugars and amino acids in the endospermwere determined during endosperm depletion. In the endospermof Euphorbia canariensis, relatively low levels of amino acids(up to 1 µmol.endosperm–1) were found of which glutamine/glutamateaccounted for 40% at the stage of radicle emergence. High levelsof amino acids (up to 4 µmol.endosperm–1) comparedwith sugars (up to 2 µmol sucrose.endosperm–1) weredetected in the endosperm of Euphorbia lambii. Arginine wasthe main component (28 µmol%) of the amino acids in thistissue. In both species amino acid composition changed graduallyduring endosperm depletion. Cotyledons retained their ability to absorb a variety of watersoluble substrates after removal of the endosperm. 14C from[U-14C]sucrose was effectively incorporated into the triterpenesof the laticifers and to a lesser extent into the sterols ofthe seedling. The highest incorporation values were found inyoung seedlings about 2 d after the emergence of the radicle.Seedlings of this age also showed high incorporation rates of14C from labelled alanine, serine, threonine, valine, leucineand isoleucine into both triterpenols and sterols, but no generalconclusions about metabolic channelling in lipid synthesis couldbe made. Endosperm, Euphorbia canariensis L. Euphorbia lambii Svent., sterols, triterpenols, amino acids, laticifer, biosynthesis  相似文献   

10.
The rate of carbon import by tomato fruits has been relatedto their carbon metabolism by examining the effects of fruittemperature on the metabolism of imported assimilates. 14C–sucrose,–glucose, –fructose, –malic acid and –citricacid were injected individually into young growing tomato fruitswhich were subsequently maintained at 25 or 5 °C for 48h. Fruit temperature greatly affected the proportions of 14Clost from the fruits by export and respiration. Only 40 percent of the injected 14C from 14C–sugars and 20 per centfrom 14C–acids was recovered from fruits at 25 °C.Less than 10 per cent of the injected 14C was exported, thebalance being respired. In contrast, more than 50 per cent ofthe injected 14C was recovered from cooled fruits, in whichthe import rate of carbon was presumably reduced, and 20–36per cent of injected 14C was exported. Cooling enhanced thesynthesis of 14C–sucrose from injected 14C–hexosesand inhibited the incorporation of 14C into starch and insolubleresidue. When 14C–sugars were injected, radioactivityexported from the cooled fruits was detected as sucrose in thephloem of the peduncles; radioactivity was also detected instems and roots when fruits were cooled. In almost fully–grownfruits injected 14C–compounds were metabolized less readilythan in smaller fruits. Conversion of 14C–hexoses to 14C–sucrosewas again enhanced by cooling (5 °C, but was less in fruitsmaintained at 35 °C than in controls. Lycopersicon esculentum, tomato, fruit, translocation, carbon metabolism  相似文献   

11.
5 x 10–5 M L-phenylalanine overcame the inhibitory effectof white light on cell division in artichoke callus culturesand increased extractable phenylalanine ammonia-lyase (PAL)activity compared to cultures grown in the presence of 5 x 10–4M phenylalanine The lower concentration of the amino acid alsoenhanced rates of uptake and incorporation of 14C labelled phenylalaninethroughout G1 and S. Differences between the two concentrationswere greatest during S with a 4-fold increase in uptake anda 3-fold increase in incorporation It is suggested thereforethat the capacity of 5 x10–5 M phenylalanine to offsetthe light effect is due to an indirect stimulatory effect onamino acid and protein metabolism Increased levels of extractablePAL activity would then be reflected by this general stimulationof protein synthesis. Helianthus tuberosus L, Jerusalem artichoke, callus culture, cell division, phenylalanine ammonia-lyase  相似文献   

12.
1) With Chlorella ellipsoidea cells, in the presence of 5x10–6M DSPD, or in its absence, the amounts of 14CO2 incorporatedin P-esters, serine-plus-glycine and alanine were larger underred light than under blue light, whereas blue light specificallyincreased 14CO2-incorporation in aspartate, glutamate, malateand fumarate (blue light effect). The amount of total 14C fixedunder blue or red light was greatly decreased by the additionof DSPD. When the concentration of DSPD was raised to 5x10–4M, practically no radioactivity was found, under blue or redlight, in aspartate, glutamate and fumarate. Radioactivity inalanine was greatly increased. Effects of higher concentrationof DSPD are explained as due to the inhibition of PEP carboxylaseactivity in Chlorella cells. 2) The percentage incorporation of 14C into aspartate and theother compounds mentioned above, under near infra-red illuminationwas significantly smaller than that under blue light and wasalmost equal to that under red light. These results along withthe effect of 5x10–6 M DSPD, exclude the possibility thatcyclic photophosphorylation is involved in the "blue light effect"mechanism. (Received December 12, 1969; )  相似文献   

13.
Oat mesophyll protoplasts isolated by 2 hr cellulysin treatmentof peeled young leaves incorporate tritiated leucine, uridineand thymidine into trichloroacetic acidinsoluble materials.Neither the protoplast-free final supernatant liquid nor protoplastsdisrupted by rapid passagethrough the tip of a Pasteur pipetteshow any incorporation activity, while intact protoplasts incubatedin the presence of penicillin and streptomycin are active. Thus,the cycloheximide and actinomycin D inhibitable incorporationprocesses appear to represent, respectively, synthesis of proteinand nucleic acids by intact protoplasts, uncomplicated by organellaror microbial contributions. Net leucine and uridine incorporation by protoplasts continueat a steady rate for about 6 hr, dien abruptly cease, whilethymidine incorporation continues linearly for at least 21 hr.Preincubation of protoplasts in leucine-free media for severalhours diminishes the duration, but not the initial rate of incorporation.The titer of protoplasts declines progressively with increasedtime of incubation. Kinetin (10–9 to 10–4 M) progressively inhibitsleucine incorporation, 2,4-D at concentrations higher than 10–7M inhibits uridine incorporation, while gibberellins, abscisicacid and ethylene are without effect on any process studied. 1 Permanent address: Department of Fruit and Vegetable Storage,.The Volcani Institute, Bet Dagan, Israel. (Received December 24, 1976; )  相似文献   

14.
[2-14C]-uridine is rapidly taken up by sycamore cells in suspensionculture. A proportion of the radioactivity enters RNA withoutmeasurable delay, whilst the remainder equilibrates with a largepool of phosphorylated compounds, the major radioactive componentof which is 5'-UMP. Both the uracil and cytosine residues ofRNA receive label from [14C]-uridine and, when the cells aresupplied with high concentrations of uridine, these bases arederived almost exclusively from the nucleoside. [14C]-uridine is incorporated into RNA at all stages of thegrowth cycle of batch cultures; its continuing incorporation,when the total RNA content of the cells is rapidly decreasing,indicates a high rate of turnover of the total RNA. Long-termlabelling experiments also indicate turnover of RNA during thephase of active cell division and suggest that a large proportionof the degradation products are not re-utilized for RNA synthesis. Sycamore cells degrade [2-14C]-uridine with release of 14CO2.The proportion degraded increases from 25 per cent at an externaluridine concentration of 10–6M to 75 per cent at 10–3M. Despite this, nucleic acids are the only macromolecules thatreceive a significant amount of radioactivity from [2-14]C-uridine.  相似文献   

15.
A study has been made of photosynthetic 14CO2 fixation by isolated‘mature’ internodes of Nitella translucens. Experimentalconditions were similar to those used in studies of the ionicrelations of these cells. Maximum rates of photosynthesis were33–40µµmoles CO2, fixed per cm2 of surfacearea per second (equivalent to 12–15 /xmoles fixed permg chlorophyll per hour). l4CO2 fixation was inhibited to thedark level by 3(3,4,dichlorophenyl)-1, 1-dimethylurea (at 0-6µM or 10µM) and by the uncoupler carbonyl cyanide-m-chlorophenylhydrazone(SµM). The presence of imidazole or ammonium sulphate(both of which uncouple ATP production in vitro) did not resultin an inhibition of 14CO2 fixation. These results are discussedin relation to published work on solute uptake by Nitella translucens.During photosynthesis there was rapid movement of 14C-labelledorganic compounds out of the chloroplasts. 14C-labelled sucrose,ammo-acids, and sugar phosphates were found in samples of vacuolarsap.  相似文献   

16.
In disbudded epicotyl cuttings taken from light grown 5-dayold Azukia angularis Phaseolus angularis) seedlings, all adventitiousrootlets appeared on the second day of incubation. No root primordiawere observed within the first 24 hr and no increase in thenumber of roots occurred after 48 hr. Puromycin (5.5?10–5M), p-fluorophenylalanine (1?10–3M),2-thiouracil (2.3?10–4M) and 2,6-diaminopurine (2?10–5M)inhibited rooting when applied to cuttings on the second day,but showed no inhibition when applied on the first day. Unlike these inhibitors, pyrithiamine (7.2?10–5M) inhibitedrooting when it was applied to cuttings on the first day. A rooting promoting effect was observed with actinomycin D (2.4?10–6M),2,4-dinitrophenol (3?10–5M) and p-fluorophenylalanine(1?10–4M) applied to the cuttings on the first day, whereasindoleacetic acid (1.7?10–4M) showed its promoting effectmost effectively on the second day. 1Contribution No. 17 from the Botanical Gardens, Faculty ofScience, University of Tokyo, Tokyo, Japan. (Received June 4, 1969; )  相似文献   

17.
Azetidine-2-carboxylic acid (AZC), which occurs naturally inLiliaceous plants, is reported to be a proline (pro) analoguePlant cell walls contain ‘extensin’, which is richin hydroxyproline (hyp). Peptidyl hyp arises through hydroxylationof peptidyl pro followed by glycosylation (arabinose attachment)of hyp Because AZC replaces peptidyl prolyl residues, it maybe a useful tool for evaluating the significance of hyp-o-arabinoselinkages in cell elongation. Therefore, we determined the effectof AZC on [14C]pro uptake, incorporation and conversion to wall-bound[14C]hyp in relation to elongation of lily pollen tubes whosewalls consist, in part, of hyp-containing glycopeptides TheAZC suppressed pollen germination 9–42 per cent (1–10mM) and subsequent tube elongation 40–54 per cent (0·1–1mM without affecting respiration In contrast, similar hyp concentrationswere without effect on tube elongation Whereas uptake of [14C]prowas 16·5–6·2 per cent of the control at0·1–1 mM AZC, [14C]leucine uptake was 85–25per cent of the control. Light microscope radioautography revealedfewer silver grains over tubes elongated in 0·1–1mM AZC than in its absence. Incorporation of [14C]pro into tnchloroaceticacid (TCA)-precipitable cytoplasm was reduced by only 10 percent at 0·01–1 mM but 43 per cent at 10 mM AZCGel filtration of cytoplasm from pollen germinated without AZCbut with [14C]pro resulted in labelled void volume (V) and threeretarded peaks (RI–III) Incorporation into V and RI wasinhibited at both 0·01 and 1 mM AZC These AZC concentrationsreduced conversion of [14C]pro to wall-bound hyp by 20 percent However, total incorporation of [14C]pro into salt-water-purifiedwall fractions was suppressed 47–53 per cent (0·1–1mM AZC). Lilium longiflorum, lily, hydroxyproline, proline, azetidine-2-carboxylic acid, pollen, pollen tube elongation  相似文献   

18.
The lipid metabolism of the marine brown alga D. membranaceawas investigated using [2–14C]acetate, [1–14C]myristate,[l–I4C]oleate and [l–14C]arachidonate as precursors.On incubation with [2–14C]acetate, 18:1 and 16:0 werethe main products formed by de novo synthesis and incorporatedinto polar lipids. With all the exogenous substrates used, DGTAwas strongly labelled and the subsequent rapid turnover of radioactivitysuggested a key role for this lipid in the redistribution ofacyl chains and most likely also in the biosynthesis of theeukaryotic galacto-lipids produced in the absence of PC. Inthe glycolipids a continuous accumulation of radioactivity wasobserved with all the substrates used. The labelling kineticsof molecular species of MGDG suggested the desaturation of 18:1to 18:4 and of 20:4 (n-6) to 20:5 (n–3) acids on thislipid. Both PG and PE were primary acceptors of de novo synthesizedfatty acids and exogenous [l–14C]oleate, but no evidenceexists for a further processing of acyl chains on these lipids.TAG, although strongly labelled with all exogenous [l–14CJacids,was not labelled when [2–14C]acetate was used as a precursorindicating the flux of endogenous fatty acids to be differentof that of exogenously supplied fatty acids. (Received November 4, 1997; Accepted February 23, 1998)  相似文献   

19.
The effect of salinity on glucose absorption and incorporation by pea roots   总被引:1,自引:0,他引:1  
Osmotic adaptation was observed in pea plants grown in Na2SO4salinized media but no complete adaptation was observed in plantsgrown in NaCl salinized media. The absorption of externally supplied glucose was depressedin pea root tips from plants grown in media salinized with eitherNaCl or Na2SO4. Under NaCl salinity this depression increasedwith increasing salinity. Under Na2SO4 salinity, no significantinhibition of absorption was observed in roots exposed to waterpotentials higher than –5 atmosphere. The amount of 14Creleased as CO2, expressed as the percent of absorbed 14C, increasedwith increasing salinity of both types. In roots grown underNaCl salinity, the incorporation of 14C into ethanol non-soluble,acid hydrolyzable substances was markedly inhibited. This inhibitionwas increased by increasing the external salinity. The effectof Na2SO4 salinity was similar but not so pronounced. The incorporation of 14C from externally supplied glucose intothe alkali-soluble fraction was practically uneffected by salinity.Non-extractable 14C was decreased in roots exposed to NaCl butwas not, apparently, effected by Na2SO4). Because of the smallnessof this fraction no clear cut conclusion can be made. Possiblemechanisms for the events are discussed. (Received October 26, 1972; )  相似文献   

20.
Plants were allowed to assimilate 14CO2 for 30 min at 5, 15,25, and 35 °C. The changes in 14C content of a mature expandedleaf (Leaf 4), young apical leaves, and storage root, were sequentiallyfollowed over a subsequent period of 24 h in continuous light.In a second experiment plants were transferred after 14CO2 assimilationto temperatures of 10, 18, 26, and 34 °C, and the partitionof 14C between the ethanol-soluble and ethanol-insoluble fractionsof the roots and leaves was followed over a period of 72 h. The specific activities of the apical leaves and of the storageroot increased to a maximum 2 h after labelling at 25 °C,4 h at 15 and 35 °C, and 6 h at 5 °C suggesting thatthe optimum temperature for translocation of photosynthate wasabout 25 °C. The 14C partition to ethanol-soluble and ethanol-insoluble fractionsof the roots and leaves was largely attained in. 9 h. Littlerepartition of 14C assimilate fractions occurred as a resultof temperature change or growth. Root ethanol-insoluble activity,however, did increase significantly over the 72-h period : possiblecauses of this slow incorporation and their relevance to themechanism of sugar storage are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号