首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
2.

Background and Aims

Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival.

Methods

Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro.

Key Results

Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure.

Conclusions

The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.  相似文献   

3.
Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r = 0.7) and varied by a factor of two, as a result of proportional changes in length and width. Size and density of stomata were not related. Following desiccation, high RH resulted in a significantly lower (6–19%) decline of transpiration in three cultivars, whereas the relative water content (RWC) of high RH-expanded leaflets was lower (29–297%) in seven cultivars. The lower RWC of these leaflets was caused by (a) higher (33–72%) stable transpiration and/or (b) lower (12–143%) RWC at which this stable transpiration occurred, depending on the cultivar. Stomatal size was significantly correlated with both characteristics (r = 0.5 and -0.7, respectively). These results indicate that stomatal size explains much of the intraspecific variation in the regulation of transpiration upon water deprivation on rose.  相似文献   

4.
Pullulan-sodium alginate blend films were prepared and characterized as a function of water activity (aw). At low aw, the incorporation of alginate into pullulan film increased the tensile strength and elastic modulus, but decreased the elongation at break of the composite films; the opposite trends were observed at elevated aw. Above 0.43 aw, water exerted a typical plasticization effect upon the biopolymer blends. As aw increased from 0.23 to 0.43, an anti-plasticization effect was observed as tensile strength and elastic modulus increased. The glass transition temperature of all samples decreased substantially as aw increased from 0.23 to 0.84 due to the plasticization effect of water. Within this aw range, one transition temperature was observed for all film specimens. The stretching vibration band of O-H was investigated using attenuated total reflection Fourier transform infrared spectroscopy to identify the various species of water interacting with the polysaccharide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号