首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

2.
Four cultivars of groundnut were grown in upland soil in Northeast Thailand to study the residual benefit of the stover to a subsequent maize crop. An N-balance estimate of the total residual N in the maize supplied by the groundnut was made. In addition three independent estimates were made of the residual benefits to maize when the groundnut stover was returned to the land and incorporated. The first estimate (Estimate 1) was an N-balance estimate. A dual labelling approach was used where 15N-labelled stover was added to unlabelled microplots (Estimate 2) or unlabelled stover was added to 15N-labelled soil microplots (Estimate 3). The nodulating groundnut cultivars fixed between 59–64% of their nitrogen (as estimated by the 15N isotope dilution method using non-nodulating groundnut as a non-fixing reference) producing between 100 and 130 kg N ha-1 in their stover. Although the following maize crop suffered from drought stress, maize grain N and dry weights were up to 80% and 65% greater respectively in the plots where the stover was returned as compared with the plots where the stover was removed. These benefits were comparable with applications of 75 kg N ha-1 nitrogen in the form of urea. The total residual N estimates of the contribution of the nodulated groundnut to the maize ranged from 16.4–27.5 kg N ha-1. Estimates of the residual N supplied by the stover and fallen leaves ranged from 11.9–21.3 kg N ha-1 using the N-balance method (Estimate 1), from 6.3–9.6 kg N ha-1 with the labelled stover method (Estimate 2) and from 0–11.4 kg N ha-1 with the labelled soil method. There was closest agreement between the two 15N based estimates suggesting that apparent added nitrogen interactions in these soils may not be important and that N balance estimates can overestimate the residual N in crops following legumes, even in very poor soils. This work also indicates the considerable ability of local groundnut cultivars to fix atmospheric nitrogen and the potential benefits from returning and incorporating legume residues to the soil in the upland cropping systems of Northeast Thailand. The applicability of the 15N methodology used here and possible reasons for the discrepancies between estimates 1, 2 and 3 are discussed.  相似文献   

3.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

4.
Peoples  M.B.  Bowman  A.M.  Gault  R.R.  Herridge  D.F.  McCallum  M.H.  McCormick  K.M.  Norton  R.M.  Rochester  I.J.  Scammell  G.J.  Schwenke  G.D. 《Plant and Soil》2001,228(1):29-41
On-farm and experimental measures of the proportion (%Ndfa) and amounts of N2 fixed were undertaken for 158 pastures either based on annual legume species (annual medics, clovers or vetch), or lucerne (alfalfa), and 170 winter pulse crops (chickpea, faba bean, field pea, lentil, lupin) over a 1200 km north-south transect of eastern Australia. The average annual amounts of N2 fixed ranged from 30 to 160 kg shoot N fixed ha–1 yr–1 for annual pasture species, 37–128 kg N ha–1 yr–1 for lucerne, and 14 to 160 kg N ha–1 yr–1 by pulses. These data have provided new insights into differences in factors controlling N2 fixation in the main agricultural systems. Mean levels of %Ndfa were uniformly high (65–94%) for legumes growing at different locations under dryland (rainfed) conditions in the winter-dominant rainfall areas of the cereal-livestock belt of Victoria and southern New South Wales, and under irrigation in the main cotton-growing areas of northern New South Wales. Consequently N2 fixation was primarily regulated by biomass production in these areas and both pasture and crop legumes fixed between 20 and 25 kg shoot N for every tonne of shoot dry matter (DM) produced. Nitrogen fixation by legumes in the dryland systems of the summer-dominant rainfall regions of central and northern New South Wales on the other hand was greatly influenced by large variations in %Ndfa (0–81%) caused by yearly fluctuations in growing season (April–October) rainfall and common farmer practice which resulted in a build up of soil mineral-N prior to sowing. The net result was a lower average reliance of legumes upon N2 fixation for growth (19–74%) and more variable relationships between N2 fixation and DM accumulation (9–16 kg shoot N fixed/t legume DM). Although pulses often fixed more N than pastures, legume-dominant pastures provided greater net inputs of fixed N, since a much larger fraction of the total plant N was removed when pulses were harvested for grain than was estimated to be removed or lost from grazed pastures. Conclusions about the relative size of the contributions of fixed N to the N-economies of the different farming systems depended upon the inclusion or omission of an estimate of fixed N associated with the nodulated roots. The net amounts of fixed N remaining after each year of either legume-based pasture or pulse crop were calculated to be sufficient to balance the N removed by at least one subsequent non-legume crop only when below-ground N components were included. This has important implications for the interpretation of the results of previous N2 fixation studies undertaken in Australia and elsewhere in the world, which have either ignored or underestimated the N present in the nodulated root when evaluating the contributions of fixed N to rotations.  相似文献   

5.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

6.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

7.
Source of the soybean N credit in maize production   总被引:2,自引:0,他引:2  
Gentry  L.E.  Below  F.E.  David  M.B.  Bergerou  J.A. 《Plant and Soil》2001,236(2):175-184
Nitrogen response trials throughout the United States Corn Belt show that economic optimum rates of N fertilization are usually less for maize (Zea mays L.) following soybean (Glycine max L.) than for maize following maize; however, the cause of this rotation effect is not fully understood. The objective of this study was to investigate the source of the apparent N contribution from soybean to maize (soybean N credit) by comparing soil N mineralization rates in field plots of unfertilized maize that had either nodulated soybean, non-nodulated soybean, or maize as the previous crop. Crop yields, plant N accumulation, soil inorganic N, and net soil mineralization were measured. Both grain yield (6.3 vs. 2.8 Mg ha–1) and above-ground N accumulation (97 vs. 71 kg ha–1) were greatly increased when maize followed nodulated soybean compared with maize following maize. A partial benefit to yield and N accumulation was also observed for maize following non-nodulated soybean. Cumulative net soil N mineralization following nodulated soybean, non-nodulated soybean, and maize was 112, 92 and 79 kg N ha–1, respectively. Net mineralization of soil N appeared to be influenced by both quality (C:N ratio) and quantity of residue from the previous crop. In addition to an increase in plant available N from mineralization, the amount of soil inorganic N (especially in soil 5 cm from the row) was greater following nodulated soybean than non-nodulated soybean or maize. Based on these data, the soybean N credit appears to result from a combination of a decrease in net soil mineralization in continuous maize production and an increase in residual soil N from symbiotic fixation.  相似文献   

8.
Nitrogen fixation in groundnut and soyabean and the residual benefits of incoporated legume stover to subsequent rice crops were estimated in farmers' fields using15N-isotope methods. Three field experiments were conducted, two which examined N2-fixation in groundnut by15N-isotope dilution using a non-nodulating groundnut as a reference crop and one in which N2-fixation in two soyabean genotypes was compared using maize as the non-fixing reference crop. Groundnut fixed 72–77% of its N amounting to 150–200 kg N ha-1 in 106–119 days and soyabean derived 66–68% of its N from N2-fixation which amounted to 108–152 kg N ha-1 under similar conditions. When legume stover was returned to the soil, there was a net contribution of N from N2-fixing varieties of groundnut in all cases ranging from 13–100 kg N ha-1, whilst due to the high % N harvest index in soyabean (87–88%) there was a net removal of N of 37–46 kg N ha-1. In all cases if the legume stover was removed there was a net removal of N in the legume crop which ranged between 54 and 74 kg N ha-1 in N2-fixing varieties of groundnut and from 58 to 73 kg N ha-1 in soyabean, whilst maize removed 66 kg N ha-1 if its stover was returned and 101 kg N ha-1 when the stover was removed. Growth of rice was improved in all cases where groundnut stover was returned resulting in increases in grain yield of 12–26% and increases in total dry matter production of 26–31%. Soyabean residues gave no increases in rice grain yield but increased total dry matter production by 12–20%. Rice accumulated more N in all cases where legume stover was returned to the soil, and N yields were larger in all cases after the N2-fixing legumes than after the non-fixing reference crops. N difference estimates of the total residual N benefits from the N2-fixing legumes ranged from 11–19 kg N ha-1 after groundnut and 15–16 kg N ha-1 after soyabean. The amounts of N estimated directly by application of15N-labelled stover amounted to 7.2–20.5 kg N ha-1 with groundnut which represented recovery of 8–22% of the N added in the stover. In soyabean only 3.0–5.8 kg N ha-1 was estimated to be recovered by15N-labelling which was 15–23% of the added N, whilst only 1.3 kg N ha-1 (4% of the N added) was recovered by rice from the maize stover. An indirect15N-method based on addition of unlabelled stover to microplots where the soil had previously been labelled with15N gave extremely variable and often negative estimates of residual N benefits. Estimates of residual N from the added stover made by N difference calculations did not correspond with the estimates by direct15N-labelling in all cases and possible reasons for this are discussed.  相似文献   

9.
The severity and increase of the Imperata cylindrica constraint as a weed, the decline of the traditional fallow systems as a means of soil fertility management and the lack of inorganic fertilizer appear to have created opportunities for adoption of mucuna (Mucuna pruriens) technology by smallholder farmers in some areas in the derived savanna of West Africa. What is not known, however, is the extent to which the establishment and N contribution of mucuna in these areas depend on symbiotic properties such as effective nodulation and mycorrhizal infection. Short term surveys carried out in 34 farmer's arable fields located in four different sites in the derived savanna, southern Benin, West Africa, together with results of greenhouse and field experiments showed that mycorrhizal infection rate of mucuma ranged from 2 to 31% and correlated positively with nodulation and shoot dry matter production. Nodulation occurred in 79% of the fields with numbers of nodules ranging from 0 to 135 plant–1. Mucuna responded both to inoculation and N fertilizer in degraded soils but growth response depended on the rhizobia strains and mucuna varieties. Mucuna accumulated in 12 weeks about 313 kg N ha–1 as either a sole crop or 166 kg N ha–1 when mixed/intercropped with maize, respectively. Across all cropping systems it derived an average of 70% of its N from atmospheric N2 (estimates made by the 15N isotope dilution method), representing 167 kg N ha–1 per 12 weeks in the field. Mucuna interplanted with maize obtained a greater proportion of its nitrogen (74%) from fixation than did mucuna grown alone (66%) suggesting that competition for soil N influences the proportion of nitrogen fixed by mucuna. The total amount of N2 fixed per hectare was, however, reduced significantly by intercropping mucuna with maize. A preceding mucuna crop provided a maize yield equivalent to 120 kg N kg ha–1 of inorganic N fertilizer.  相似文献   

10.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

11.
In phosphorus deficient soils and under smallscale farming systems, the development of efficient management strategies for P fertilizers is crucial to sustain food production. A field experiment was conducted on a P-fixing Acrisol in western Kenya to study possibilities of replenishing soil P with seasonal additions of small rates of P fertilizers. Triple superphosphate was applied at 0, 10, 25, 50 and 150 kg P ha–1 for 5 consecutive maize growing seasons followed by 4 seasons of residual crops. Maize yields and soil P fractions were determined. Although maize responded to additions of 10 kg P ha–1 with a cumulative grain yield of 16.8 Mg ha–1, at the end of the experiment, compared to 8.8 Mg ha–1 in the non-P fertilized plots, soil labile P did not increase correspondingly. Seasonal additions of 150 kg P ha–1 increased maize yields to a cumulative value of 39 Mg ha–1 at the end of the experiment, and increased all soil inorganic P fractions. At the third season of residual phase, treatment with a cumulative addition of 750 kg P ha–1 gave the highest yields compared to treatments in the same residual stage, but these yields were considered less than the maximum yield of the season. This indicates that the large build up of soil P was not available for crop uptake. The inorganic P fraction extracted by NaHCO3 was the most affected by changes in management, increasing during the input phase and decreasing after interruption of P addition, for all P rates. The decrease in this pool during the residual phase could be explained by the maize uptake. This study showed that seasonal additions of 25 kg P ha–1 can increase maize yield with gradual replenishment of soil P.  相似文献   

12.
An experiment was established in 1992 in eastern Ontario, Canada to determine the effects of crop rotation (continuous maize, soybean-maize and alfalfa-maize) and nitrogen (N) amendment [0, 100 and 200 kg N ha–1 of fertilizer (NH4NO3), and 50 and 100 Mg ha–1 (wet wt.) each of stockpiled and rotted dairy manure] on maize production and soil properties. From 1997 to 1999, an additional study was added to the experiment to investigate treatment effects on the susceptibility of maize hybrids to gibberella ear rot. A moderately resistant and a susceptible hybrid were planted in each plot and inoculated with a macroconidial suspension of Fusarium graminearum by both the silk channel injection and the kernel-wound techniques. At harvest, ears were rated for the severity of disease symptoms and harvested kernels were analyzed for the mycotoxin deoxynivalenol (DON). The greatest number of significant N effects were found in the continuous maize treatments and with the susceptible hybrid. Most N amendments decreased both disease severity and DON accumulation in the susceptible hybrid. The most consistent effect was a decrease in disease severity with 100 kg N ha–1 fertilizer and an increase in disease severity with the higher rate of 200 kg N ha–1. This study is the first to report on the effects of soil N amendments on gibberella ear rot susceptibility.  相似文献   

13.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   

14.
Nitrogen (N) deficiency is a major constraint to the productivity of the African smallholder farming systems. Grain, green manure and forage legumes have the potential to improve the soil N fertility of smallholder farming systems through biological N2-fixation. The N2-fixation of bean (Phaseolus vulgaris), soyabean (Glycine max), groundnut (Arachis hypogaea), Lima bean (Phaseolus lunatus), lablab (Lablab purpureus), velvet bean (Mucuna pruriens), crotalaria (Crotalaria ochroleuca), jackbean (Canavalia ensiformis), desmodium (Desmodium uncinatum), stylo (Stylosanthes guianensis) and siratro (Macroptilium atropurpureum) was assessed using the 15N natural abundance method. The experiments were conducted at three sites in western Kenya, selected on an agro-ecological zone (AEZ) gradient defined by rainfall. On a relative scale, Museno represents high potential AEZ 1, Majengo medium potential AEZ 2 and Ndori low potential AEZ 3. Rainfall in the year of experimentation was highest in AEZ 2, followed by AEZ 1 and AEZ 3. Experimental fields were classified into high, medium and low fertility classes, to assess the influence of soil fertility on N2-fixation performance. The legumes were planted with triple super phosphate (TSP) at 30 kg P ha?1, with an extra soyabean plot planted without TSP (soyabean-P), to assess response to P, and no artificial inoculation was done. Legume grain yield, shoot N accumulation, %N derived from N2-fixation, N2-fixation and net N inputs differed significantly (P<0.01) with rainfall and soil fertility. Mean grain yield ranged from 0.86 Mg ha?1, in AEZ 2, to 0.30 Mg ha?1, in AEZ 3, and from 0.78 Mg ha?1, in the high fertility field, to 0.48 Mg ha?1, in the low fertility field. Shoot N accumulation ranged from a maximum of 486 kg N ha?1 in AEZ 2, to a minimum of 10 kg N ha?1 in AEZ 3. Based on shoot biomass estimates, the species fixed 25–90% of their N requirements in AEZ 2, 23–90% in AEZ 1, and 7–77% in AEZ 3. Mean N2-fixation by green manure legumes ranged from 319 kg ha?1 (velvet bean) in AEZ 2 to 29 kg ha?1 (jackbean) in AEZ 3. For the forage legumes, mean N2-fixation ranged from 97 kg N ha?1 for desmodium in AEZ 2 to 39 kg N ha?1 for siratro in AEZ 3, while for the grain legumes, the range was from 172 kg N ha?1 for lablab in AEZ 1 to 3 kg N ha?1 for soyabean-P in AEZ 3. Lablab and groundnut showed consistently greater N2-fixation and net N inputs across agro-ecological and soil fertility gradients. The use of maize as reference crop resulted in lower N2-fixation values than when broad-leaved weed plants were used. The results demonstrate differential contributions of the green manure, forage and grain legume species to soil fertility improvement in different biophysical niches in smallholder farming systems and suggest that appropriate selection is needed to match species with the niches and farmers’ needs.  相似文献   

15.
Summary Agro-ecosystems have developed from mixed- and multiple-cropping systems with relatively closed N cycles to intensively managed monocultures with large N inputs in the form of commercial fertilizers. Cultivation of increasingly larger areas of land has resulted in substantial losses of soil organic matter and N. Also, the move from slash and burn agriculture to intensively ploughed systems has resulted in losses through increased erosion.The use of N fertilizers has increased rapidly toca. 60 Tg N yr–1 (1980/81), which is equivalent to at least 40% of the N fixed biologically in all terrestrial systems and 36% more than is fixed in all croplands. On a global scale, the major losses of N from agro-ecosystems are estimated to be: harvest, 30 Tg; leaching, 2 Tg; erosion, 2–20 Tg; denitrification 1–44 Tg; and ammonia volatilization, 13–23 Tg. However, the data base is very crude and several estimates may be wrong by as much as one order of magnitude.Additions of N fertilizers have both direct and indirect effects on soil microorganisms. The possible importance of such effects is briefly discussed and a specific example is given on long-term effects on soil microbial biomass and nitrification rates in 27-year-old cropping systems with different N additions: (i) 0 kg N ha–1 yr–1, (ii) 80 kg N ha–1 yr–1, (iii) farmyard manureca. 80 kg N ha–1 yr–1.Few detailed N budgets exist for agro-ecosystems, despite its major importance as a limiting plant nutrient and the large losses of N from such systems. In conclusion, preliminary nitrogen budgets for four cropping systems (barley receiving 0 or 120 kg N ha–1 yr–1; meadow fescue ley with 200 kg N ha–1 yr–1 and a lucerne ley) are presented, with special attention to N flow through the soil organisms.Keynote address  相似文献   

16.
Summary The effect of cultivation (ploughing followed by rotavation) on the mineralization of soil nitrogen was measured at 2 sites on a silt loam soil. Both sites had a predominantly arable cropping history but one had been under grass for the previous 2 years and the other had carried wheat. Mineralization of N was slightly faster in cultivated soil but the difference was only significant at the site previously under grass. At this site cultivated soil contained 7 kg ha–1 more mineral N than uncultivated soil 2 weeks after treatment, and 9 kg ha–1 after 6 weeks. The corresponding figures for the site that had grown wheat were 4 and 6 kg N ha–1.  相似文献   

17.
The continued rise in mineral fertilizer costs has demanded cheaper alternative N sources for resource-constrained smallholder farmers, with N2-fixing legumes presenting a viable option to maintain crop productivity. A study was conducted over two years on a coarse sandy soil (Lixisol with <80 g clay kg?1 soil) to determine the productivity of (i) five grain legumes, (ii) a green manure legume, and (iii) maize on smallholder farmers’ fields, identified as SOFECSA Leaming Centres, in Chinyika, north-east Zimbabwe. The objective of the study was to promote appropriate targeting of soil fertility technologies to different farmer resource groups. Emphasis was put on establishing the scope for improving nutrient resource allocation efficiency and crop yields in relation to different management practices as dictated by resource endowment. Both biomass and grain yield results indicated a general conformity to farmer resource group as follows: Resource-endowed farmers (RG1) > Intermediate farmers (RG2) > Resource-constrained farmers (RG3). Although overall biomass productivity for the grain legumes was generally low, <2.8 Mg ha?1 across all Learning Centres, soyabean grain yields increased by between 30% (RG1) and >500% (RG3) over the two seasons. However, there was a general preference for bambara nut by RG3 farmers who cited low cash demands in terms of seed and external inputs, and pest-resistance compared with other grain legumes. Increased maize grain yields following legumes, and which exceeded 7 Mg ha?1 for RG1 under green-manure, was apparently due to an increase in soil available N. The results showed scope for enhancing the contribution of legumes to both soil fertility and household nutrition within smallholder farming systems if targeted according to farmers’ resource endowment. The challenge is availing the minimum level of external inputs to RG3 farmers to achieve significant yield benefits on poor soils. The paper presents three main scenarios constituting major challenges for integrating legumes into the current farming systems.  相似文献   

18.
Application of phosphorus at 40, 60, 80 and 100 kg P2O5 ha–1 in the presence of a uniform dressing of nitrogen (N) and potash (K2O) each applied at 20 and 24 kg ha–1 to chickpea (CM-88) grown in sandy loam soil in a replicated field experiment improved the nodulation response of the crop, increased its grain yield (ka ha–1) by 18, 59, 40 and 14 percent, biomass yield (ka ha–1) by 32, 32, 54 and 14 percent, biomass N (kg ha–1) by 31, 48, 49, 19 percent, and biomass P (kg ha–1) by 26, 40, 41 and 11 percent, respectively. The effect of phosphorus on the nitrogenase activity of the excised roots of chickpea was, however, inconsistent.  相似文献   

19.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

20.
Nitrogen mineralization rates were estimated in 19-year-old interplantings of black walnut (Juglans nigra L.) with dinitrogen fixing autumn-olive (Elaeagnus umbellata Thunb.) or black alder (Alnus glutinosa L. Gaertn.) and in pure walnut plantings at two locations in Illinois USA. N mineralization rates were measured repeatedly over a one year period usingin situ incubations of soil cores in oxygen-permeable polyethylene bags at 0–10 and 10–20 cm soil depths, and also by burying mixed-bed ion-exchange resin in soil. Mineralization rates were highest in summer and in plots containing actinorhizal Elaeagnus and Alnus in contrast with pure walnut plots. Elaeagnus plots at one location yielded 236 kg of mineral N ha–1 yr–1 in the upper 20 cm of soil, a value higher than previously reported for temperate decidous forest soils in North America. The highest mean plot values for N mineralization in soil at a location were 185 kg ha–1 yr–1 for Alnus interplantings and 90 kg ha–1 yr–1 for pure walnut plots. Plots which had high N mineralization rates also had the largest walnut trees. Despite low pH (4.1 and 6.5) and low extractable P concentrations (1.4 and 0.7 mg kg–1 dry mass) at the two locations, nitrification occurred in all plots throughout the growing season. NO 3 –N was the major form of mineralized N in soil in the actinorhizal interplantings, with NH 4 + –N being the major form of mineral N in control plots. Walnut size was highly correlated with soil nitrogen mineralization, particularly soil NO 3 –N production in a plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号