首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic peanut peroxidase (CP) was isolated from peanut (Arachis hypogaea) cell suspension culture medium. CP is a glycoprotein with three N-linked glycan sites at Asn60, Asn144, and Asn185. ESI-MS of the intact purified protein reveals the microheterogeneity of the glycans. Tryptic digestion of CP gave a near complete sequence coverage by ESI-MS. The glycopeptides from the tryptic digestion were separated by RP HPLC identified by ESI-MS and the structure of the glycan chains determined by ESI-MS/MS. The glycans are large structures of up to 16 sugars, but most of their non-reducing ends have been modified giving a mixture of shorter chains at each site. Good agreement was found with the one glycan previously analyzed by (1)H NMR. This work is the basis for the future studies on the role of the glycans on stability and folding of CP and is another example of a detailed structural characterization of complex glycoproteins by mass spectrometry.  相似文献   

2.
Normal baby hamster kidney (BHK) fibroblasts and ricin-resistant (RicR) mutants of BHK cells derived from them were labelled metabolically with [3H]mannose or [3H]fucose. Glycopeptides obtained by digestion of disrupted cells with Pronase were separated by affinity chromatography on concanavalin A-Sepharose. In the normal BHK cells major glycopeptide fractions were obtained consisting of tetra- and tri-antennary sialylated complex glycans, bi-antennary sialylated glycans, and neutral oligomannosidic chains. The majority of bi-antennary chains were shown to contain a fucosyl-(alpha 1-6)-N-acetylglucosaminyl sequence in the core region by their ability to bind to a lentil lectin affinity column. All of the mutant cell lines examined were found to accumulate oligomannosidic glycans in cellular glycoproteins: complex sialylated glycans were either absent or greatly reduced in amount. Analysis of fractions isolated from concanavalin A-Sepharose by Bio-Gel P-4 chromatography and glycosidase degradation indicated that the glycans accumulating in RicR14 cells have the general structure: (formula; see text) and derivatives having fewer alpha-mannosyl units. We have also analysed the glycopeptides released by trypsin treatment from the surface of the normal and mutant cells, as well as those obtained by proteolysis of fibronectin isolated from the medium. The glycopeptide profiles of the cell-surface-derived material and of fibronectin showed for the mutant cells a marked accumulation of oligomannosidic chains at the expense of complex oligosaccharide chains. Hence, the alterations in glycan structure detected in bulk cellular glycoproteins of RicR cells are expressed also in cell surface glycoproteins and in fibronectin, a secreted glycoprotein.  相似文献   

3.
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.  相似文献   

4.
R J Ivatt 《Biochemistry》1986,25(23):7522-7528
Embryonal carcinoma and early embryonic cells assemble a family of unusually large and complex carbohydrates. These glycans are highly branched, repeating copolymers of the sugars galactose and N-acetylglucosamine, referred to as polylactosamines, and are frequently decorated with fucose, sulfate, and sialic acid. We have previously shown that in teratocarcinoma cells these glycans are part of a large spectrum of glycans assembled on mannose cores derived from a common precursor glycan. Metabolic studies revealed a large excess of high-mannose glycans at a time when complex-type glycans cease to accumulate. The present studies demonstrate that these high-Man glycans are not degraded internally or secreted directly but are on glycoproteins destined for the cell surface. These unprocessed glycoproteins replace material lost during the extensive membrane turnover that occurs in these cells. Their export to the cell surface is delayed in a pre-Golgi compartment.  相似文献   

5.
Some mutants of Caenorhabditis elegans show altered patterns of ectopic binding with wheat germ agglutinin (WGA). Some of these mutants also have defects of morphogenesis and movement during development. To clarify the structures of WGA-ligands in C. elegans that may be involved in developmental events, we have analyzed glycan structures capable of binding WGA. We isolated glycoproteins from wild-type C. elegans by WGA-affinity chromatography, and analyzed their glycan structures by a combination of hydrazine degradation and fluorescent labeling. The glycoproteins had oligomannose-type and complex-type N-glycans that included agalacto-biantenna and agalacto-tetraantenna glycans. Although the complex-type glycans carried beta-GlcNAc residues at their non-reducing ends, they did not bind to the WGA-agarose-resin. Thus, it was suggested that these N-glycans were not responsible for WGA-binding of the isolated glycoproteins. Hydrazinolysis of the glycoproteins also released a considerable amount of GalNAc monosaccharide. It was surmised that N-acetylgalactosamine was derived from mucin-type O-glycans with the Tn-antigen structure (GalNAcalpha1-O-Ser/Thr). WGA-blotting assay of neoglycoproteins revealed that a cluster of Tn-antigens was a good ligand for WGA. These results suggested that the WGA-ligand in C. elegans is a cluster of alpha-GalNAc monosaccharides linked to mucin-like glycoprotein(s). The observations reported in this paper emphasize the possible significance of mucin-type O-glycans in the development of a multicellular organism.  相似文献   

6.
We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins.  相似文献   

7.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

8.
Monosaccharide Sequence of Protein-Bound Glycans of Uukuniemi Virus   总被引:3,自引:10,他引:3       下载免费PDF全文
Uukuniemi virus, a member of the Bunyaviridae family, was grown in BHK-21 cells in the presence of [3H]mannose. The purified virions were disrupted with sodium dodecyl sulfate and digested with pronase. The [3H]mannose-labeled glycopeptides of the mixture of the two envelope glycoproteins G1 and G2 were characterized by degrading the glycans with specific exo-and endoglycosidases, by chemical methods, and by analyzing the products with lectin affinity and gel chromatography. The glycopeptides of Uukuniemi virus fell into three categories: complex, high-mannose type, and intermediate. The complex glycopeptides probably contained mainly two NeuNAc-Gal-GlcNAc branches attached to a core (Man)3(GlcNAc)2 peptide. The high-mannose-type glycans were estimated to contain at least five mannose units attached to two N-acetylglucosamine residues. Both glycan species appeared to be similar to the asparagine-linked oligosaccharides found in many soluble and membrane glycoproteins. The results suggested that the intermediate glycopeptides contained a mannosyl core. In about half of the molecules, one branch appeared to be terminated in mannose, and one appeared to be terminated in N-acetylglucosamine. Such glycans are a novel finding in viral membrane proteins. They may represent intermediate species in the biosynthetic pathway from high-mannose-type to complex glycans. Their accumulation could be connected with the site of maturation of the members of the Bunyaviridae family. Electron microscopic data suggest that the virions bud into smooth-surfaced cisternae in the Golgi region. The relative amounts of [3H]mannose in the complex, high-mannose-type, and intermediate glycans were 25, 62, and 13%, respectively, which corresponded to the approximate relative number of oligosaccharide chains of 2:2.8:1, respectively, in the roughly equimolar mixture of G1 and G2. Endoglycosidase H digestion of isolated [35S]methionine-labeled G1 and G2 proteins suggested that most of the complex and intermediate chains were attached to G1 and that most of the high-mannose-type chains were attached to G2.  相似文献   

9.
Urine is a complex mixture of proteins and waste products and a challenging biological fluid for biomarker discovery. Previous proteomic studies have identified more than 2800 urinary proteins but analyses aimed at unraveling glycan structures and glycosylation sites of urinary glycoproteins are lacking. Glycoproteomic characterization remains difficult because of the complexity of glycan structures found mainly on asparagine (N-linked) or serine/threonine (O-linked) residues. We have developed a glycoproteomic approach that combines efficient purification of urinary glycoproteins/glycopeptides with complementary MS-fragmentation techniques for glycopeptide analysis. Starting from clinical sample size, we eliminated interfering urinary compounds by dialysis and concentrated the purified urinary proteins by lyophilization. Sialylated urinary glycoproteins were conjugated to a solid support by hydrazide chemistry and trypsin digested. Desialylated glycopeptides, released through mild acid hydrolysis, were characterized by tandem MS experiments utilizing collision induced dissociation (CID) and electron capture dissociation fragmentation techniques. In CID-MS(2), Hex(5)HexNAc(4)-N-Asn and HexHexNAc-O-Ser/Thr were typically observed, in agreement with known N-linked biantennary complex-type and O-linked core 1-like structures, respectively. Additional glycoforms for specific N- and O-linked glycopeptides were also identified, e.g. tetra-antennary N-glycans and fucosylated core 2-like O-glycans. Subsequent CID-MS(3), of selected fragment-ions from the CID-MS(2) analysis, generated peptide specific b- and y-ions that were used for peptide identification. In total, 58 N- and 63 O-linked glycopeptides from 53 glycoproteins were characterized with respect to glycan- and peptide sequences. The combination of CID and electron capture dissociation techniques allowed for the exact identification of Ser/Thr attachment site(s) for 40 of 57 putative O-glycosylation sites. We defined 29 O-glycosylation sites which have, to our knowledge, not been previously reported. This is the first study of human urinary glycoproteins where "intact" glycopeptides were studied, i.e. the presence of glycans and their attachment sites were proven without doubt.  相似文献   

10.
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.  相似文献   

11.
We present a protocol for the identification of glycosylated proteins in plasma followed by elucidation of their individual glycan compositions. The study of glycoproteins by mass spectrometry is usually based on cleavage of glycans followed by separate analysis of glycans and deglycosylated proteins, which limits the ability to derive glycan compositions for individual glycoproteins. The methodology described here consists of 2D HPLC fractionation of intact proteins and liquid chromatography-multistage tandem mass spectrometry (LC-MS/MS(n)) analysis of digested protein fractions. Protein samples are separated by 1D anion-exchange chromatography (AEX) with an eight-step salt elution. Protein fractions from each of the eight AEX elution steps are transferred onto the 2D reversed-phase column to further separate proteins. A digital ion trap mass spectrometer with a wide mass range is then used for LC-MS/MS(n) analysis of intact glycopeptides from the 2D HPLC fractions. Both peptide and oligosaccharide compositions are revealed by analysis of the ion fragmentation patterns of glycopeptides with an intact glycopeptide analysis pipeline.  相似文献   

12.
Proteins carrying sulfated glycans (i.e., sulfated glycoproteins) are known to be associated with diseases, such as cancer, cystic fibrosis, and osteoarthritis. Sulfated glycoproteins, however, have not been isolated or characterized from complex biological samples due to lack of appropriate tools for their enrichment. Here, we describe a method to identify and characterize sulfated glycoproteins that are involved in chemical modifications to control the molecular charge of the peptides. In this method, acetohydrazidation of carboxyl groups was performed to accentuate the negative charge of the sulfate group, and Girard’s T modification of aspartic acid was performed to assist in protein identification by MS tagging. Using this approach, we identified and characterized the sulfated glycoproteins: Golgi membrane protein 1, insulin-like growth factor binding protein-like 1, and amyloid beta precursor-like protein 1 from H2171 cells, a small cell lung carcinoma cell line. These sulfated glycoproteins carry a complex-type N-glycan with a core fucose and 4′-O-sulfated LacdiNAc as the major glycan.  相似文献   

13.
New glycoproteins of 100-120 kDa were isolated from the unfertilized eggs of flounder, Paralichthys olivaceus. Compositionally indistinguishable glycopeptides of 6 kDa were also purified from the activated or fertilized eggs. These high and low molecular mass glycoproteins are characterized by high (about 85%) carbohydrate content. Although some heterogeneities exist in the amino acid sequences, the 6-kDa glycopeptides (decapeptides with single large N-linked glycan chains), isolated from the fertilized eggs are the repeating units of the high molecular mass glycoproteins. As judged from several distinctive features the 100-120-kDa glycoproteins are apparently major components of cortical alveoli of flounder eggs and are regarded as members of glycoproteins we have defined under the name of "hyosophorin" (Kitajima, K., Inoue, S., and Inoue, Y. (1989) Dev. Biol. 132, 544-553). Composition analysis, Smith degradation, hydrazinolysis-nitrous acid deamination, permethylation analysis, and 400-MHz 1H NMR spectroscopy provided evidence for the structure of a novel penta-antennary glycan chain attached to the repeating unit (decapeptide) of the protein core. The structure thus determined is: (Formula: see text). The presence of a unique class of carbohydrate-rich glycoproteins (H-hyosophorin) in the unfertilized eggs, their conversion to the repeating unit (L-hyosophorin) at fertilization, and the finding of a free glycan chain that was formed by scission between the GlcNAc and Asn residues of L-hyosophorin, in the fertilized eggs including embryos of 4-11-h postinsemination, support the view that these molecules may be important in fertilization and subsequent development.  相似文献   

14.
Glycopeptides obtained by exhaustive proteolytic digestion of synaptosomal plasma membranes from adult rat forebraini were separated by affinity chromatography on concanavalin A-Sepharoe. Concanavalin A-binding glycopeptides are essentially made up of mannose and N-acetylglucosamine in a molar ration of 3.45:1, whereas glycopeptides not bound to concanavalin A have a complex monosaccharide composition. By gel filtration on Bio-Gel P-30, concanavalin A-binding glycopeptides appear as low-molecular-weight glycopeptides (migrating like ovalbumin glycopeptides), whereas glycopeptides not bound to concanavalin A behave as high-molecular-weight glycopeptides (migrating like fetuin glycopeptides). Comparison of concanavalin A-binding glycopeptides from rat brain synaptosomal plasma membranes with concanavalin A-binding glycoproteins isolated from the same membrane fraction shows clear differences in monosccharide composition. We demonstrate here that this discrepancy is due to the presence on most concanavalin A-binding glycoprotein subunits of at least two different types of glycan: in addition to the concanavalin A-binding glycans, these glycoprotein subunits carry other glycans which do not interact with concanavalin A. Biological implications of the presence of two (or more) types of glycan on the same polypeptide are discussed.  相似文献   

15.
R J Ivatt 《Biochemistry》1985,24(25):7314-7320
Embryonal carcinomas and early embryonic cells assemble a family of unusually large and complex carbohydrates. These glycans contain large amounts of the sugars galactose and N-acetylglucosamine and are decorated with fucose, sulfate, and sialic acids. We show that, by their sensitivity to inhibition by tunicamycin and by their resistance to cleavage by alkaline hydrolysis, in teratocarcinoma stem cells the expression of these glycans is on asparagine-linked cores. These glycans are part of the large spectrum of glycans that are assembled on mannose cores derived from a common, lipid-linked precursor glycan. We examined the fate of this precursor glycan after its transfer to protein and found that there are two distinct pools of protein-linked, high-mannose glycans, which can be distinguished on the basis of their rate of processing. One pool is processed rapidly to provide a wide spectrum of complex-type glycans. This processing occurs efficiently with little evidence of intermediate structures. The other, larger pool remains unprocessed, beyond glucose removal, at a time when complex-type glycans cease to accumulate. In contrast, high-mannose glycans are relatively minor components of the glycans labeled during long-term, continuous labeling, and in this situation they are processed to provide a spectrum of trimmed glycans.  相似文献   

16.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

17.
This protocol shows how to obtain a detailed glycan compositional and structural profile from purified glycoproteins or protein mixtures, and it can be used to distinguish different isobaric glycan isomers. Glycoproteins are immobilized on PVDF membranes before the N-glycans are enzymatically released by PNGase F, isolated and reduced. Subsequently, O-glycans are chemically released from the same protein spot by reductive β-elimination. After desalting with cation exchange microcolumns, the glycans are separated and analyzed by porous graphitized carbon liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Optionally, the glycans can be treated with sialidases or other specific exoglycosidases to yield more detailed structural information. The sample preparation takes approximately 4 d, with a heavier workload on days 2 and 3, and a lighter load on days 1 and 4. The time for data interpretation depends on the complexity of the samples analyzed. This method can be used in conjunction with the analysis of enriched glycopeptides by capillary/nanoLC-ESI-MS/MS, which together provide detailed information regarding the site heterogeneity of glycosylation.  相似文献   

18.
The carbohydrate composition of arterial basement-membrane-like material was investigated. Basement-membrane-like material was isolated from cultures of aortic myomedial cells by a sonication/differential-centrifugation technique. Purified basement-membrane-like material contained a total of 5% sugars, comprising glucose, galactose, mannose, fucose, sialic acid, glucosamine and galactosamine in the approximate molar proportions 3.2:3.5:3.4:3.2:1:5.5:3.1. In addition, small amounts of xylose were found. Analyses for uronic acid showed that glycosaminoglycans comprised about 1% of isolated basement-membrane-like material. The carbohydrate composition indicated the presence of complex-type oligosaccharides in addition to hydroxylysine-linked disaccharides. [3H]Glucosamine-labelled glycopeptides obtained by proteinase digestion and gel filtration were resistant to endo-beta-N-acetylglucosaminidase D, but more than 10% were susceptible to alpha-mannosidase, demonstrating the presence of high-mannose-type oligosaccharides. The distribution of carbohydrates among peptides of basement-membrane-like material on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was investigated after labelling with [3H]mannose, [3H]fucose, [3H]galactose and [3H]glucosamine. Among peptides that appeared to carry carbohydrates were a proteoglycan(s) and seven glycoproteins in the molecular-weight range 120 000-700 000.  相似文献   

19.
Outer mitochondrial membranes synthesize a N-glycoprotein by a direct incorporation of sugars from their nucleotide-donors into an endogenous protein acceptor. To characterize the oligosaccharide moiety of this N-glycoprotein, we sequentially incorporated [14C]-sugars into the protein acceptor. After pronase digest, the released [14C]-glycopeptides were fractionated on a QAE-Sephadex column which gave rise to 9% of neutral glycopeptides and 91% of charged glycopeptides. These latter were identified as bearing phosphate residues in the form of monoester (28%) and acid-stable diester (63%). The oligosaccharide moiety of this mitochondrial glycoprotein has been characterized as incomplete biantennary complex-type chains.  相似文献   

20.
Our previous studies suggest that the α2,3sialylated T-antigen (NeuAcα2,3Galβ1,3GalNac-) and associated glycan structures are likely to be elevated during cancer. An easy and reliable strategy to label mucinous glycans that contain such carbohydrates can enable the identification of novel glycoproteins that are cancer associated. To this end, the present study demonstrates that the exchange sialylation property of mammalian ST3Gal-II can facilitate the labeling of mucin glycoproteins in cancer cells, tumor specimens, and glycoproteins in cancer sera. Results show that (i) the radiolabeled mucin glycoproteins of each of the cancer cell lines studied (T47D, MCF7, LS180, LNCaP, SKOV3, HL60, DU4475, and HepG2) is distinct either in terms of the specific glycans presented or their relative distribution. While some cell lines like T47D had only one single sialylated O-glycan, others like LS180 and DU4475 contained a complex mixture of mucinous carbohydrates. (ii) [14C]sialyl labeling of primary tumor cells identified a 25-35 kDa mucin glycoprotein unique to pancreatic tumor. Labeled glycoproteins for other cancers had higher molecular weight. (iii) Studies of [14C] sialylated human sera showed larger mucin glycopeptides and >2-fold larger mucin-type chains in human serum compared to [14C]sialyl labeled glycans of fetuin. Overall, the exchange sialylation property of ST3Gal-II provides an efficient avenue to identify mucinous proteins for applications in glycoproteomics and cancer research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号