首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究膀胱癌FFPE组织切片的N-连接糖链,发现膀胱癌FFPE肿瘤组织的异常N-连接糖链修饰情况。方法 发展基于FFPE组织切片原位提取N-连接糖链的实验流程。通过PNGase F酶切FFPE组织解释放N-连接糖链。对N-连接糖链自由端进行全甲基化修饰。通过MALDI-TOF/TOF-MS检测N-连接糖链的相对含量。进行数据库匹配,确定N-连接糖链的可能糖型。ROC分析用于预测显著差异N-连接糖链作为预测膀胱癌生物标志物的准确度。结果 MALDI-TOF/TOF-MS检测泛甲基化修饰N-连接糖链的数据显示,在16例膀胱癌患者的肿瘤和癌旁组织的3次重复实验中,肿瘤组织中蛋白质高甘露糖型N2H6、N2H7、N2H8、N2H9和复杂型N5H6F1糖链修饰水平显著上升,同时高甘露糖型N2H5、杂合型N3H5以及复杂型N3H4、N4H4、N5H6F1S2糖链修饰水平显著下降。ROC分析显示,双天线型N-连接糖链N3H4(AUC=0.90)和N4H4(AUC=0.91)在单独或者共同区分膀胱癌患者肿瘤组织和癌旁组织中都具有很好的可靠性,可能成为膀胱癌的潜在生物标志物。结论 膀胱癌FFPE肿瘤组织中存在蛋白质异常N-糖基化修饰,N-连接糖链N3H4和N4H4或可成为膀胱癌的潜在生物标志物。  相似文献   

2.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

3.
The dendritic cell surface receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR specifically recognize high mannose N-linked carbohydrates on viral pathogens. Previous studies have shown that these receptors bind the outer trimannose branch Manalpha1-3[Manalpha1-6]Manalpha present in high mannose structures. Although the trimannoside binds to DC-SIGN or DC-SIGNR more strongly than mannose, additional affinity enhancements are observed in the presence of one or more Manalpha1-2Manalpha moieties on the nonreducing termini of oligomannose structures. The molecular basis of this enhancement has been investigated by determining crystal structures of DC-SIGN bound to a synthetic six-mannose fragment of a high mannose N-linked oligosaccharide, Manalpha1-2Manalpha1-3[Manalpha1-2Manalpha1-6]Manalpha1-6Man and to the disaccharide Manalpha1-2Man. The structures reveal mixtures of two binding modes in each case. Each mode features typical C-type lectin binding at the principal Ca2+-binding site by one mannose residue. In addition, other sugar residues form contacts unique to each binding mode. These results suggest that the affinity enhancement displayed toward oligosaccharides decorated with the Manalpha1-2Manalpha structure is due in part to multiple binding modes at the primary Ca2+ site, which provide both additional contacts and a statistical (entropic) enhancement of binding.  相似文献   

4.
This paper reports the first rigorous evidence for the existence of N-linked oligosaccharides in Dictyocaulus viviparus, an economically important nematode that parasitises cattle. Structural strategies based upon fast atom bombardment mass spectrometry were employed to examine detergent extracts of homogenised adult D.viviparus for their N-glycan content. These revealed that detergent-soluble material is rich in high mannose, truncated and complex-type families of N-linked oligosaccharides. Importantly, the most abundant antennae in the complex-type structures were shown to carry the Lewis(x)epitope (Galbeta1-4(Fucalpha1-3)GlcNAc). Although the Lewis(x)moiety occurs in other helminths such as schistosomes, nematodes have previously been thought to lack this epitope. The Lewis(x)epitopes in D.viviparus are carried on bi-, tri-, and tetraantennary glycans and are therefore candidates for recognition events requiring multivalent ligands. There is compelling evidence from schistosome research that glycoconjugates containing Lewis(x)structures are immunomodulators. We propose that the Lewis(x)-rich glycans identified in this study might similarly be involved in D.viviparus host interactions.  相似文献   

5.
The crystal structures of the glycosylated N-terminal two domains of ICAM-1 and ICAM-2 provided a framework for understanding the role of glycosylation in the structure and function of intercellular adhesion molecules (ICAMs). The most conserved glycans were less flexible in the structures, interacting with protein residues and contributing to receptor folding and expression. The first N-linked glycan in ICAM-2 contacts an exposed tryptophan residue, defining a conserved glycan-W motif critical for the conformation of the integrin binding domain. The absence of this motif in human ICAM-1 exposes regions used in receptor dimerization and rhinovirus recognition. Experiments with soluble molecules having the N-terminal two domains of human ICAMs identified glycans of the high mannose type N-linked to the second domain of the dendritic cell-specific ICAM-grabbing nonintegrin lectin-ligands ICAM-2 and ICAM-3. About 40% of those receptor molecules bear endoglycosidase H sensitive glycans responsible of the lectin binding activity. High mannose glycans were absent in ICAM-1, which did not bind to the lectin, but they appeared in ICAM-1 mutants with additional N-linked glycosylation and lectin binding activity. N-Linked glycosylation regulate both conformation and immune related functions of ICAM receptors.  相似文献   

6.
High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.  相似文献   

7.
Gemmill  TR; Trimble  RB 《Glycobiology》1998,8(11):1087-1095
The large N-linked oligosaccharides released from Schizosaccharomyces pombe by endo-beta-N-acetylglucosaminidase H were examined to determine how the negatively chargedpyruvylated galactoses present (Gemmill,T.R., and Trimble,R.B., 1996, J. Biol. Chem ., 271, 25945-25949) were attached to the oligosaccharide chains. Binding of biotinylated human serum amyloid P and peanut agglutinin to native and depyruvylated S.pombe glycoproteins, respectively, indicated that the pyruvylated epitope was likely to be in the beta configuration. Examination by high- field 1H NMR of whole glycans and a disaccharide fragment released from them on partial acid hydrolysis showed that the pyruvylated galactose species was in fact beta1,3-linked to a second galactose, and this occurred an average of five to six times on nominal Gal57Man64GlcNAc N- glycans. The pyruvate-2,(4,6)Gal-beta1,3Gal epitope is chemically similar to acetaldehyde-Galbeta1,3Gal groups found on the glycoproteins from Paramyxovirus-infected bovine kidney cells (Prehm, P., Scheid,A. and Choppin,P.W. ,1979, J. Biol. Chem ., 254, 9669-9677). The 1:1 stoichiometry between pyruvate and beta-linked galactose in these S.pombe glycans indicates that either pyruvate addition to terminal beta1,3Gal is highly efficient or that pyruvylated Gal is transferred en bloc to alpha1,2-linked Gal residues in theN-linked chains. In contradiction to many galactomannan-producing fungi, which add substantial amounts of Gal in the furanose form to their glycoproteins, all detectable Gal in the large S.pombe galactomannans is in the pyranose form, as found in higher eukaryotes. The current work shows that the S.pombe outer chain structure is a poly-alpha1,6Man backbone 2- O-substituted with either Gal or the pyruvylated galactobiose and contains little alpha1,2-linked or 2-O-substituted Man. This is in contrast to the S. cerevisiae outer chain, which is poly-alpha1,6Man substituted with alpha1,2-linked Man sidechains (Ballou,C.E. ,1990, Methods Enzymol , 185, 440-470).   相似文献   

8.
Many studies have shown that the human blood fluke Schistosoma mansoni contains glycoproteins whose oligosaccharide side chains are antigenic in infected hosts. We report here that adult male schistosomes synthesize glycoproteins containing complex-type N-linked chains that have structural features not commonly found in mammalian glycoproteins. Adult male worms were incubated in media containing either [3H]mannose, [3H]glucosamine, or [3H]galactose, and the metabolically radiolabeled oligosaccharides on newly synthesized glycoproteins were analyzed. Schistosomes synthesize triantennary- and biantennary-like complex-type asparagine-linked chains that contain mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Interestingly, none of the complex-type chains contain sialic acid, and few of the chains contain galactose. Since N-acetylgalactosamine is not a common constituent of mammalian-derived N-linked chains, we investigated the position and linkage of this residue in the schistosome-derived glycopeptides. Virtually all of the N-acetylgalactosamine was beta-linked and in a terminal position. The unusual features of the S. mansoni glycoprotein oligosaccharides support the possibility that they may be involved in the host immune response to infection.  相似文献   

9.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

10.
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.  相似文献   

11.
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

12.
Oxazoline mono-, di-, tri- and hexasaccharides, corresponding to the core components of N-linked glycoprotein high mannose glycans, are synthesised as potential glycosyl donors for endohexosaminidase catalysed glycosylation of glycopeptides and glycoprotein remodelling. The crucial beta-D-Manp-(1-->4)-D-GlcpNAc linkage is synthesised via epimerisation of gluco disaccharide substrates by sequential triflation and nucleophilic substitution. Oxazolines are formed directly from the anomeric OPMP protected N-acetyl glucosamine derivatives. Efficient endohexosaminidase catalysed glycosylation of a synthetic beta-D-GlcpNAcAsn glycosyl amino acid is demonstrated with the trisaccharide oxazoline donor.  相似文献   

13.
beta-Adrenergic stimulation of rat parotid acinar cells markedly increases [3H]mannose incorporation into N-linked glycoproteins [Kousvelari, Grant, Banerjee, Newby & Baum (1984) Biochem. J. 222, 17-24]. More than 90% of this protein-bound [3H]mannose was preferentially incorporated into four secretory glycoproteins. The ratio of [3H]mannose/[14C]leucine present in these individual proteins was 1.7-4-fold greater with isoproterenol-treated cells than with untreated controls. In isoproterenol-stimulated cells, [3H]mannose incorporation into mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol was increased 2-3-fold over that observed in unstimulated cells. Similarly, formation of mannosylated oligosaccharide-PP-dolichol was increased approx. 4-fold in microsomes prepared from isoproterenol-treated cells. Also, turnover of oligosaccharide-PP-dolichol was significantly increased (5-fold) by beta-adrenergic stimulation; the half-life for oligosaccharide-PP-dolichol decreased from 6 min in control cells to 1.2 min in isoproterenol-stimulated cells. By 15 min after isoproterenol addition to acinar cells, the specific radioactivity of parotid oligosaccharide moieties increased about 3-fold over the value observed in the absence of the agonist. Taken together, these results strongly suggest that elevation of N-linked protein glycosylation in rat parotid acinar cells after beta-adrenoreceptor stimulation resulted from significant enhancement in the synthesis of mannosylphosphoryl dolichol and oligosaccharide-PP-dolichol and the turnover of oligosaccharide-PP-dolichol.  相似文献   

14.
Immature and mature forms of glycoprotein gC were purified by immunoadsorbent from herpes simplex virus type 1-infected BHK cells labeled with [3H]mannose for a 20-min pulse or for 11 h followed by a 3-h chase. The nature of N-asparagine-linked oligosaccharides carried by the immature form, pgC (molecular weight = 92,000), and the mature gC (molecular weight = 120,000) has been investigated. All pronase-digested glycopeptides of pgC were susceptible to endo-beta-N-acetylglucosaminidase H treatment; thus they have a high-mannose structure. Using thin-layer chromatography to separate endo-beta-N-acetylglucosaminidase H-cleaved oligosaccharides, polymannosyl chains of different sizes, ranging from Man9GlcNAc to Man5GlcNAc, were separated. The major components were Man8GlcNAc and Man7GlcNAc, suggesting that pgC labeled in a 20-min pulse represents the form of glycoprotein already routed to the Golgi apparatus. Analysis of glycopeptides of mature gC showed that the majority (95%) of N-linked glycans were converted to complex-type glycans. Ion-exchange chromatography and affinity chromatography on concanavalin A-Sepharose and leucoagglutinin-agarose revealed that diantennary and triantennary glycans predominated, whereas tetrantennary chains were not present. Parts of the di- and triantennary chains were not fully sialylated. The high heterogeneity of complex-type chains found in mature gC may be related to the high number of N-glycosylation sites of the glycoprotein as predicted by DNA sequencing studies (Frink et al., J. Virol. 45:634-647, 1983).  相似文献   

15.
The effects of two drugs, swainsonine (SW) and deoxynojirimycin (dNM), on synthesis and export of thyroglobulin were studied in folliculized porcine thyroid cells cultured in a serum-free medium. These drugs were expected to alter N-linked glycans in thyroglobulin. Newly synthesized thyroglobulin labeled with [2-3H]mannose or [4,5-3H]leucine was obtained by immunoprecipitation from the follicular contents, culture media and cell extracts; the first two compartments, containing secreted thyroglobulin, were sometimes analyzed together. Leucine incorporation was not inhibited by SW and only slightly by dNM. In contrast dNM strongly decreased mannose incorporation (by up to 50-75% at 1-3 mM). However after 16-h mannose labelings, SW and/or dNM at 2.5 microM and 3 mM respectively did not significantly modify the relative proportions of radioactive thyroglobulin in the above-mentioned compartments. Pronase glycopeptides prepared from these thyroglobulins were examined with respect to behaviour on concanavalin-A-Sepharose and position on Bio-Gel P-4. Oligosaccharides released by endoglucosaminidase H and with high affinity for the lectin, i.e. high-mannose and certain hybrids, were further characterized by various exoglycosidase treatments. Thyroglobulin from control cells displayed complex and high-mannose glycans comparable in size and proportion to those attributed to tissue-extracted porcine thyroglobulin. After treatment with SW (an inhibitor of alpha-mannosidase II), complex glycans were almost totally replaced by sialylated hybrid glycans. In contrast to this nearly total suppression, dNM (an inhibitor of the trimming glucosidases) caused only a 30% decrease in labeling of complex units and an about 50% increase in high-mannose glycans, covered to some degree by glucose. Finally a [3H]leucine pulse-chase study was performed on thyroglobulin secretion in the absence or presence of both SW and dNM. Though a slowdown was detectable in the first few hours, this study revealed no change in the long-term export of thyroglobulin.  相似文献   

16.
The affinity interactions of Concanavalin A (Con A) with various saccharide oligomers (dextrins, dextrans, and selected N-linked glycans from various glycoproteins) have been investigated through a capillary electrophoresis approach. Con A has shown a notable binding discrimination between the α-1,6-linked dextran and α-1,4-linked dextrin oligomers. Both the binding capacity and binding discrimination appear to decrease with an increase in sugar chainlength. While the core structure of N-linked glycans is deemed to be responsible for the overall binding of various glycans to Con A, the presence of mannose units at the non-reducing ends was found to be very beneficial to the affinity interaction with Con A. Finally, a connection between the glycan–lectin interaction and glycoprotein–lectin interaction has also been suggested.  相似文献   

17.
The H-1 and H-2 signals of beta-1,2-linked mannooligosaccharides isolated from the phosphomannan of Candida albicans NIH B-792 strain by mild acid hydrolysis were assigned by a sequential NMR assignment method that combines two-dimensional 1H-1H correlated spectroscopy (COSY) and two-dimensional nuclear Overhauser enhancement and exchange spectroscopy (NOESY). The results indicated that the H-1 and H-2 of each beta-1,2-linked mannopyranose unit show largely different signals compared with those of the alpha-linked ones and that the correlation between linkages and signals could not be explained by a conventional additivity rule. Furthermore, a regular proportional downfield shift of the H-1 signal was observed in the order of the mannose unit from the reducing terminal except those of the reducing and nonreducing terminal positions. Although the 1H NMR spectra of these oligosaccharides were complicated due to the presence of a large portion of the beta-anomer from the reducing terminal mannose unit, reduction of the oligosaccharides with NaBH4 to the corresponding alcohols gave simple and more readily interpretable 1H NMR spectra. Unexpectedly, however, a shift of H-1 signals by this reduction occurred not only on the second mannose unit but also on the third and fourth mannose units from the modified reducing terminal group of each oligosaccharide alcohol. This result indicates that the reducing terminal mannose unit is able to affect up to the fourth mannose unit from the reducing terminal. The presence of a long-distance interresidue NOE also suggests that the beta-1,2-linked mannooligosaccharides have a compactly folded conformation in solution.  相似文献   

18.
The solution conformation of model compounds for the tri'-antennary and tetraantennary (six-arm) branch point of N-linked glycans has been determined through the use of chemical shift, relaxation, and nuclear Overhauser enhancement data. The object was to establish the conformation about the glycosidic linkages in the N-linked substructure GlcNAc(beta 1,6) [GlcNAc(beta 1,2)] Man(alpha)- by estimation of values for the appropriate glycosidic torsional angles. The GlcNAc(beta 1,6) linkage in a trisaccharide model compound was found to be constrained to a narrow rotameric subpopulation about the substituted Man C5-C6 bond (omega = -60 degrees) and a narrow range of possible phi - psi values. Free rotation about the Man C5-C6 bond was obstructed by unfavorable steric interactions between the GlcNAc(beta 1,6) and GlcNAc(beta 1,2) residues. A phi, psi value of 55 degrees, 190 degrees was found to be consistent with the NMR data for the GlcNAc(beta 1,6) linkage. However, the value of psi appears to be "virtual" in that the molecule is in equilibrium between two different values (90 degrees and 252 degrees). For the GlcNAc(beta 1,2) linkage, complete agreement between all the observed NMR parameters and all the calculated ensemble average values could only be obtained with a set of potential energy functions which included hydrogen bonding. Other choices of potentials yielded calculated values that disagreed with at least two of the observed quantities. As a result, we infer that an interresidue hydrogen bond is formed, and we find it to be between the GlcNAc(beta 1,2) ring oxygen and the Man C3 hydroxyl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The conformational properties of a cyclic trisaccharide: [O-beta-D-glucopyranosyl-(1----6)]3 1,6"-anhydride nonacetate (C36H48O24, 1) have been established by high-resolution 1H- and 13C-n.m.r. spectroscopy in conjunction with potential-energy and molecular-mechanics calculations. The n.m.r. parameters used were nuclear Overhauser enhancements (n.O.e.) and coupling constants. From theoretical models of the trisaccharide, a statistical-mechanics approach was used to compute an ensemble average-relaxation matrix from which the n.O.e. were calculated. The observed nuclear Overhauser enhancements as measured by n.m.r. spectroscopy may be satisfactorily modelled if averaging over two conformational states is considered. In solution, both conformations of the molecule exhibit three-fold symmetry; the beta-linked glucopyranose rings have the 4C1 conformation. In one conformer, the orientation about the (1----6) linkage is characterized by torsion angles phi = 79.5 degrees, psi = 143.5, and omega = -64.3. For the other conformer, these values are phi = -137.7, psi = 68.2, and omega = 45.6. The existence of such a conformer shows that solution behaviour is not dominated by the stabilizing influence of the exoanomeric effect.  相似文献   

20.
Mannose-specific lectins are widely distributed in higher plants and are believed to play a role in recognition of high-mannose type glycans of foreign micro-organisms or plant predators. Structural studies have demonstrated that the mannose-binding specificity of lectins is mediated by distinct structural scaffolds. The mannose/glucose-specific legume (e.g., Con A, pea lectin) exhibit the canonical twelve-stranded beta-sandwich structure. In contrast to legume lectins that interact with both mannose and glucose, the monocot mannose-binding lectins (e.g., the Galanthus nivalis agglutinin or GNA from bulbs) react exclusively with mannose and mannose-containing N-glycans. These lectins possess a beta-prism structure. More recently, an increasing number of mannose-specific lectins structurally related to jacalin (e.g., the lectins from the Jerusalem artichoke, banana or rice), which also exhibit a beta-prism organization, were characterized. Jacalin itself was re-defined as a polyspecific lectin which, in addition to galactose, also interacts with mannose and mannose-containing glycans. Finally the B-chain of the type II RIP of iris, which has the same beta-prism structure as all other members of the ricin-B family, interacts specifically with mannose and galactose. This structural diversity associated with the specific recognition of high-mannose type glycans highlights the importance of mannose-specific lectins as recognition molecules in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号