首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the four-stepped catalytic cycle of water oxidation by photosystem II (PSII) molecular oxygen is released in only one of the four reaction steps whereas the release of four protons is distributed over all steps. In principle, the pattern of proton production could be taken as indicative of the partial reactions with bound water. In thylakoids the extent and rate of proton release varies as function of the redox transition and of the pH without concomitant variations of the redox pattern. The variation has allowed to discriminate between deprotonation events of peripheral amino acids (Bohr effects) as opposed to the chemical deprotonation of a particular redox cofactor, and of water. In contrast, in thylakoids grown under intermittent light, as well as in PSII core particles the pattern of proton release is flat and independent of the pH. This has been attributed to the lack in these materials of the chlorophyll a,b-binding (CAB) proteins. We now found that a thylakoid-like, oscillatory pattern of proton release was restored simply by the addition of glycerol which modifies the protein–protein interaction. Being a further proof for the electrostatic origin of the greater portion of proton release, this effect will serve as an important tool in further studies of water oxidation.  相似文献   

2.
P Jahns  W Junge 《Biochemistry》1992,31(32):7390-7397
Thylakoid membranes were isolated from pea seedlings grown under intermittent light (2-min light/118-min dark cycles). These preparations differed from controls (thylakoids from plants grown under 16-h light/8-h dark cycles) in the following respects: 15 times smaller chlorophyll/protein ratio, 10 times greater chlorophyll a/b ratio, absence of light-harvesting chlorophyll a/b binding proteins, and 2-3-fold greater ratio of photosystem II over photosystem I. In addition we found the following: (1) Electrogenic electron transfer around cytochrome b6/f under flashing light was greatly enhanced, probably as a consequence of the greater photosystem II/photosystem I ratio. (2) The rate of proton uptake from the medium at the acceptor side of photosystem II was enhanced, probably by unshielding of the quinone binding domain. (3) The N,N'-dicyclohexylcarbodiimide sensitivity of the proton-pumping activity of photosystem II was absent, which was consistent with the attribution of a N,N'-dicyclohexylcarbodiimide-induced protonic short circuit to chlorophyll a/b binding proteins. (4) The sensitivity of oxygen evolution under continuous light to variations of pH or the concentration of Ca2+ was altered. Chlorophyll a/b binding proteins serve as light-harvesting antennas. We found in addition that they modulated the activity of water oxidation and, in particular, the proteolytic reactions around photosystem II.  相似文献   

3.
When maize ( Zea mays L. cv. LG11) leaves are exposed to low temperatures and high light modifications to both photosystem 2 (PS2) and the light-harvesting chlorophyll a/b protein complex associated with photosystem 2 (LHC2) occur. This study examines the consequences of these modifications for phosphorylation of LHC2 and PS2 polypeptides and the associated changes in electron transport. Maize leaves were chilled at 5°C for 6 h under photon flux densities of 1 500 and 250 μmol m-2 s-1. Thylakoids were then isolated from the leaves and their abilities to phosphorylate LHC2 and PS2 polypeptides and modify electron transport activities were determined. Measurements of chlorophyll fluorescence induction in the thylakoids were also made. Thylakoids isolated from leaves chilled under high light and from leaves kept in the ambient growth environment had similar phosphoprotein profiles. However, polypeptide phosphorylation in thylakoids from the chilled leaves did not produce a decrease in PS2 electron transport. Chilling leaves under low light produced a decrease in the ability of isolated thylakoids to phosphorylate PS2, but not LHC2, polypeptides, which was not associated with any change in the phosphorylation-induced decrease in PS2 electron transport. Chilling under high, but not low, light appears to produce changes in membrane organisation that do not affect the ability of the thylakoids to phosphorylate PS2 and LHC2 polypeptides, but which do prevent the phosphorylation-induced decrease in excitation energy transfer from LHC2 to PS2.  相似文献   

4.
R E McCarty  A R Portis 《Biochemistry》1976,15(23):5110-5114
A simple relationship between observed phosphorylation efficiencies (P/e ratios) and internal proton concentration in spinach chloroplast thylakoids has been derived. P/e ratios, varked by either changing the light intensity or by adding the energy transfer inhibitor, 4'-deoxyphlorizin, were found to change with internal proton concentration in accordance with this relationship. A quantitative prediction of the effect of uncouplers on the P/e ratio can probably also be made. By extrapolation of plots of observed P/e ratios against internal proton concentration divided by the overall rate of electron flow, a maximum intrinsic P/e of about 0.66 is obtained. Assuming that two protons appear inside thylakoids per electron transferred, a P/e ratio of 0.66 suggests that three internal protons are consumed for each ATP formed. Internal protons may be considered to be substrates for the phosphorylation reaction. Hill plots of phosphorylation rate vs. internal proton concentration also indicate that three protons are consumed for each ATP synthesized. Thus, the H+ concentration gradient behaves quantitatively, as well as qualitatively, as if it is the connecting link between electron flow and phosphorylation in illuminated thylakoids.  相似文献   

5.
According to the concept of the Q-cycle, the H+/e- ratio of the electron transport chain of thylakoids can be raised from 2 to 3 by means of the rereduction of plastoquinone across the cytochrome b6f complex. In order to investigate the H+/e- ratio we compared stationary rates of electron transport and proton translocation in spinach thylakoids both in the presence of the artificial electron acceptor ferricyanide and in the presence of the natural acceptor system ferredoxin+NADP. The results may be summarised as follows: (1) a variability of the H+/e- ratio occurs with either acceptor. H+/e- ratios of 3 (or even higher in the case of the natural acceptor system, see below) are decreased towards 2 if strong light intensity and low membrane permeability are employed. Mechanistically this could be explained by proton channels connecting the plastoquinol binding site alternatively to the lumenal or stromal side of the cytochrome b6f complex, giving rise to a proton slip reaction at high transmembrane DeltapH. In this slip reaction protons are deposited on the stromal instead of the lumenal side. In addition to the pH effect there seems to be a contribution of the redox state of the plastoquinone pool to the control of proton translocation; switching over to stromal proton deposition is favoured when the reduced state of plastoquinone becomes dominant. (2) In the presence of NADP a competition of both NADP and oxygen for the electrons supplied by photosystem I takes place, inducing a general increase of the H+/e- ratios above the values obtained with ferricyanide. The implications with respect to the adjustment of a proper ATP/NADPH ratio for CO2 reduction are discussed.  相似文献   

6.
Thylakoids isolated from leaves of winter rye (Secale cereale L. cv Puma) grown at either 20 or 5°C were extracted with the nonionic detergents Triton X-100 and octyl glucoside. Less total chlorophyll was extracted from 5°C thylakoids by these detergents under all conditions, including pretreatment with cations. Thylakoids from either 20 or 5°C leaves were solubilized in 0.7% Triton X-100 and centrifuged on sucrose gradients to purify the light harvesting complex (LHCII). Greater yields of LHCII were obtained by cation precipitation of particles derived from 20°C thylakoids than from 5°C thylakoids. When 20 and 5°C thylakoids were phosphorylated and completely solubilized in sodium dodecyl sulfate, no differences were observed in the 32Pi-labeling characteristics of the membrane polypeptides. However, when phosphorylated thylakoids were extracted with octyl glucoside, extraction of LHCII associated with the 5°C thylakoids was markedly reduced in comparison with the extraction of LHCII from 20°C membranes. Since 20 and 5°C thylakoids exhibited significant differences in the Chl content and Chl a/b ratios of membrane fractions produced after solubilization with either Triton X-100 or octyl glucoside, and since few differences between the proteins of the two membranes could be observed following complete denaturation in sodium dodecyl sulfate, we conclude that the integral structure of the thylakoid membrane is affected during rye leaf development at low temperature.  相似文献   

7.
Analyses of chlorophyll fluorescence induction kinetics from DCMU-poisoned thylakoids were used to examine the contribution of the light-harvesting chlorophyll a/b protein complex (LHCP) to Photosystem II (PS II) heterogeneity. Thylakoids excited with 450 nm radiation exhibited fluorescence induction kinetics characteristic of major contributions from both PS II and PS IIβ centres. On excitation at 550 nm the major contribution was from PS IIβ centres, that from PS II centres was only minimal. Mg2+ depletion had negligible effect on the induction kinetics of thylakoids excited with 550 nm radiation, however, as expected, with 450 nm excitation a loss of the PS II component was observed. Thylakoids from a chlorophyll-b-less barley mutant exhibited similar induction kinetics with 450 and 550 nm excitation, which were characteristic of PS IIβ centres being the major contributors; the PS II contribution was minimal. The fluorescence induction kinetics of wheat thylakoids at two different developmental stages, which exhibited different amounts of thylakoid appression but similar chlorophyll a/b ratios and thus similar PS II:LHCP ratios, showed no appreciable differences in the relative contributions of PS II and PS IIβ centres. Mg2+ depletion had similar effects on the two thylakoid preparations. These data lead to the conclusion that it is the PS II:LHCP ratio, and probably not thylakoid appression, that is the major determinant of the relative contributions of PS II and PS IIβ to the fluorescence induction kinetics. PS II characteristics are produced by LHCP association with PS II, whereas PS IIβ characteristic can be generated by either disconnecting LHCP from PS II or by preferentially exciting PS II relative to LHCP.  相似文献   

8.
Old and very recent experiments on the extent and the rate of proton release during the four reaction steps of photosynthetic water oxidation are reviewed. Proton release is discussed in terms of three main sources, namely the chemical production upon electron abstraction from water, protolytic reactions of Mn-ligands (e.g. oxo-bridges), and electrostatic response of neighboring amino acids. The extent of proton release differs between the four oxidation steps and greatly varies as a function of pH both, but differently, in thylakoids and PS II-membranes. Contrastingly, it is about constant in PS II-core particles. In any preparation, and on most if not all reaction steps, a large portion of proton transfer can occur very rapidly (<20 s) and before the oxidation of the Mn-cluster by Yz + is completed. By these electrostatically driven reactions the catalytic center accumulates bases. An additional slow phase is observed during the oxygen evolving step, S3S4S0. Depending on pH, this phase consists of a release or an uptake of protons which accounts for the balance between the number of preformed bases and the four chemically produced protons. These data are compatible with the hypothesis of concerted electron/proton-transfer to overcome the kinetic and energetic constraints of water oxidation.Abbreviations BBY-membranes Photosystem II-enriched membrane fragments prepared after Berthold, Babcock and Yocum (1981) - BSA bovine serum albumin - Chl chlorophyll - CAB-protein chlorophyll a/b-binding protein - core particles oxygen evolving reaction center core particles of Photosystem II - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - IML intermittent light - P-680 primary electron donor of Photosystem II - PS II Photosystem II - Yz tyrosine residue on the D1 polypeptide, electron carrier between manganese and P-680 - photochemical reaction   相似文献   

9.
Biogenesis of thylakoid membranes in the conditional chlorophyll b-deficient CD3 mutant of wheat is dramatically altered by relatively small differences in the light intensity under which seedlings are grown. When the CD3 mutant is grown at 400 microE/m2 S (high light, about one-fifth full sunlight) plants are deficient in chlorophyll b (chlorophyll a/b ratio greater than 6.0) and lack or contain greatly reduced amounts of the chlorophyll a/b-binding complexes CPII/CPII (mobile or peripheral LHCII), CP29, CP24 and LHCI, as shown by mildly denaturing 'green gel' electrophoresis, by fully denaturing SDS-PAGE, and by Western blot analysis. High light CD3 chloroplasts display an unusual morphology characterized by large, sheet-like stromal thylakoids formed into parallel unstacked arrays and a limited number of small grana stacks displaced toward the edges of the arrays. Changes in the supramolecular organization of CD3 thylakoids, seen with freeze-fracture electron microscopy, include a reduction in the size of EFs particles, which correspond to photosystem II centers with variable amounts of attached LHCII, and a redistribution of EF particles from the stacked to the unstacked regions. When CD3 seedlings are grown at 150 microE/m2 S (low light) there is a substantial reversal of all of these effects. Thus, chlorophyll b and the chlorophyll a/b-binding proteins accumulate to near wild-type levels (chlorophyll a/b ratio = 3.5-4.5) and thylakoid morphology is more nearly wild type in appearance. Growth of the CD3 mutant in the presence of chloramphenicol stimulates the accumulation of chlorophyll b and its binding proteins (Duysen, M. E., T. P. Freeman, N. D. Williams, and L. L. Huckle. 1985. Plant Physiol. 78:531-536). We show that this partial rescue of the CD3 high light phenotype is accompanied by large changes in thylakoid structure. The CD3 mutant, which defines a new class of chlorophyll b-deficient phenotype, is discussed in the more general context of chlorophyll b deficiency.  相似文献   

10.
The photosynthetic water oxidase is composed of ˜15 polypeptides which are grouped around two functional parts: photosystem II and the catalytic manganese centre. Photochemically driven vectorial electron transfer between the manganese centre and bound plastoquinone causes deprotonation–protonation reactions at opposite sides of the thylakoid membrane. Thereby the water oxidase acts as a proton pump. Incubation of stacked thylakoids with N,N'-dicyclohexylcarbodiimide (DCCD) short-circuited its proton pumping activity. Under flashing light, the extent of both proton release into the lumen by water oxidation and of proton uptake from the medium by reduced quinone was diminished. Instead there was a rapid electrogenic backreaction with a strong H/D-isotope effect. Apparently protons which were produced by water oxidation were channelled across the transmembrane protein to the bound quinone. A more rapid protonation of the reduced quinone was evident from a shortening of the time lag for the reduction of photosystem I. These effects were paralleled by the preferential labelling with [14C]DCCD in stacked thylakoids of two polypeptides with 20 and 24 kd apparent molecular mass. These may be capping the oxidizing and the reducing terminus of the water oxidase to control proton extrusion and proton uptake respectively.  相似文献   

11.
Juergen Clausen 《BBA》2008,1777(10):1311-1318
In cyanobacteria, algae and plants Photosystem II produces the oxygen we breathe. Driven and clocked by light quanta, the catalytic Mn4Ca-tyrosine centre accumulates four oxidising equivalents before it abstracts four electrons from water, liberating dioxygen and protons. Aiming at intermediates of the terminal four-electron cascade, we previously have suppressed this reaction by elevating the oxygen pressure, thereby stabilising one redox intermediate. Here, we established a similar suppression by increasing the proton concentration. Data were analysed in terms of only one (peroxy) redox intermediate between the fourfold oxidised Mn4Ca-tyrosine centre and oxygen release. The surprising result was that the release into the bulk of one proton per dioxygen is linked to the first and rate-limiting electron transfer in the cascade rather than to the second which produces free oxygen. The penultimate intermediate might thus be conceived as a fully deprotonated peroxy-moiety.  相似文献   

12.
M R Mauk  P D Barker  A G Mauk 《Biochemistry》1991,30(41):9873-9881
Two potentiometric methods have been used to study the pH-dependent changes in proton binding that accompany complex formation between cytochrome c and cytochrome b5. With one method, the number of protons bound or released upon addition of one cytochrome to the other has been measured as a function of pH. The results from these studies are correlated with the complexation-induced difference titration curve calculated from the titration curves of the preformed complex and of the individual proteins. Both methods demonstrate that complex formation at acid pH is accompanied by proton release, that complex formation at basic pH is accompanied by proton uptake, and that the change in proton binding at neutral pH, where stability of complex formation is maximal, is relatively small. Under all conditions studied, the stoichiometry of cytochrome c-cytochrome b5 complex formation is 1:1 with no evidence of higher order complex formation. Although the dependence of complex formation on pH for interaction between different species of cytochrome c and cytochrome b5 are qualitatively similar, they are quantitatively different. In particular, complex formation between yeast iso-1-cytochrome c and lipase-solubilized bovine cytochrome b5 occurs with a stability constant that is 10-fold greater than observed for the other two pairs of proteins under all conditions studied. Interaction between these two proteins is also significantly less dependent on ionic strength than observed for complexes formed by horse heart cytochrome c with either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Thylakoids isolated from winter rye (Secale cereale L. cv Muskateer) grown at 5°C or 20°C were compared with respect to their capacity to exhibit an increase in light saturated rates of photosystem I (PSI) electron transport (ascorbate/dichlorophenolindophenol → methylviologen) after dark preincubation at temperatures between 0 and 60°C. Thylakoids isolated in the presence or absence of Na+/Mg2+ from 20°C grown rye exhibited transient, 40 to 60% increases in light saturated rates of PSI activity at all preincubation temperatures between 5 and 60°C. This increase in PSI activity appeared to occur independently of the electron donor employed. The capacity to exhibit this in vitro induced increase in PSI activity was examined during biogenesis of rye thylakoids under intermittent light conditions at 20°C. Only after exposure to 48 cycles (1 cycle = 118 minutes dark + 2 min light) of intermittent light did rye thylakoids exhibit an increase in light saturated rates of PSI activity even though PSI activity could be detected after 24 cycles. In contrast to thylakoids from 20°C grown rye, thylakoids isolated from 5°C grown rye in the presence of Na+/Mg2+ exhibited no increase in light saturated PSI activity after preincubation at any temperature between 0 and 60°C. This was not due to damage to PSI electron transport in thylakoids isolated from 5°C grown plants since light saturated PSI activity was 60% higher in 5°C thylakoids than 20°C thylakoids prior to in vitro dark preincubation. However, a two-fold increase in light saturated PSI activity of 5°C thylakoids could be observed after dark preincubation only when 5°C thylakoids were initially isolated in the absence of Na+/Mg2+. We suggest that 5°C rye thylakoids, isolated in the presence of these cations, exhibit light saturated PSI electron transport which may be closer to the maximum rate attainable in vitro than 20°C thylakoids and hence cannot be increased further by dark preincubation.  相似文献   

14.
A mathematical model of electron and proton transport in chloroplasts of higher plants was developed, which takes into account the lateral heterogeneity of the lamellar system. Based on the results of numerical experiments, lateral profiles of pH in the thylakoid lumen and in the narrow gap between grana thylakoids under different metabolic conditions (in the state of photosynthetic control and under photophosphorylation conditions) were simulated. Lateral profiles of pH in the thylakoid lumen and in the intrathylakoid gap were simulated for different values of the proton diffusion coefficient and stroma pH. The model demonstrated that there might be two mechanisms of regulation of electron and proton transport in chloroplasts: (1) the slowing down of noncyclic electron transport due to a decrease in the intrathylakoid pH, and (2) the retardation of plastoquinone reduction due to slow diffusion of protons inside the narrow gap between the thylakoids of grana.  相似文献   

15.
Using a rapid pH electrode, measurements were made of the flash-induced proton transport in isolated spinach chloroplasts. To calibrate the system, we assumed that in the presence of ferricyanide and in steady-state flashing light, each flash liberates from water one proton per reaction chain. We concluded that with both ferricyanide and methylviologen as acceptors two protons per electron are translocated by the electron transport chain connecting Photosystem II and I. With methyl viologen but not with ferricyanide as an acceptor, two additional protons per electron are taken up due to Photosystem I activity. One of these latter protons is translocated to the inside of the thylakoid while the other is taken up in H2O2 formation. Assuming that the proton released during water splitting remains inside the thylakoid, we compute H+/e- ratios of 3 and 4 for ferricyanide and methylviologen, respectively. In continuous light of low intensity, we obtained the same H+/e- ratios. However, with higher intensities where electron transport becomes rate limited by the internal pH, the H+/e- ratio approached 2 as a limit for both acceptors. A working model is presented which includes two sites of proton translocation, one between the photoacts, the other connected to Photosystem I, each of which translocates two protons per electron. Each site presents a approximately 30 ms diffusion barrier to proton passage which can be lowered by uncouplers to 6-10 ms.  相似文献   

16.
Thylakoids isolated from spinach leaves ( Spinacia oleracea L. cv. Monatol) were exposed to variable low temperatures under non-freezing conditions. After incubation, changes in the activities of several photochemical reactions and physical properties of the membranes were measured at room temperature.
Cyclic photophosphorylation was strictly dependent on the temperature and the electrolyte concentration: decrease in temperature and increase in NaCl concentration enhanced membrane damage. Inactivation of photophosphorylation was accompanied by stimulation of non-cyclic electron transport, increase in proton permeability and decrease in δpH. When dicyclohexylcarbodiimide was added, the proton gradient became completely restored. The temperature- and salt-dependent breakdown of photophosporylation was closely related to the release of the chloroplast coupling factor (CF1) from the membranes. The addition of Mg2+, very low concentrations of ATP or ADP, or higher concentrations of low-molecular-weight polyols prior to temperature treatment prevented thylakoid damage.
The data indicate that inactivation of photophosphorylation of thylakoids at low temperatures is determined to a considerable extent by the cold lability of the CF1. As a consequence, it must be concluded that damage of biomembranes caused by freezing is not due solely to changes resulting from the ice formation but additionally by temperature-dependent alterations of cold-labile proteins. Moreover, the data explain the mechanism of non-colligative cryoprotection of isolated thylakoid membranes.  相似文献   

17.
A proton electrochemical potential across the membranes of photosynthetic purple bacteria is established by a light-driven proton pump mechanism: the absorbed light in the reaction center initiates electron transfer which is coupled to the vectorial displacement of protons from the cytoplasm to the periplasm. The stoichiometry and kinetics of proton binding and release can be tracked directly by electric (glass electrodes), spectrophotometric (pH indicator dyes) and conductimetric techniques. The primary step in the formation of the transmembrane chemiosmotic potential is the uptake of two protons by the doubly reduced secondary quinone in the reaction center and the subsequent exchange of hydroquinol for quinone from the membrane quinone-pool. However, the proton binding associated with singly reduced promary and/or secondary quinones of the reaction center is substoichiometric, pH-dependent and its rate is electrostatically enhanced but not diffusion limited. Molecular details of protonation are discussed based on the crystallographic structure of the reaction center of purple bacteriaRb. sphaeroides andRps. viridis, structure-based molecular (electrostatic) calculations and mutagenesis directed at protonatable amino acids supposed to be involved in proton conduction pathways.  相似文献   

18.
Abstract Photosynthetic electron transport activities and the ability to generate and maintain a trans-thylakoid proton electrochemical gradient were examined during chloroplast development in 4-day-old wheat leaves grown under a diurnal light regime. Polarographic and spectropholometric studies on leaf tissue demonstrated that poorly developed chloroplasls at the leaf base could photo-oxidize water and transfer electrons from photosystem 2 to photosystem 1. The capacity for non-cyclic whole-chain electron transport increased during chloroplast development. Thylakoids isolated from the leaf base, although capable of pumping protons into the inlrathylakoid space, could not maintain a trans-membrane proton electrochemical gradient; this ability developed at later stages of chloroplast biogenesis in the leaf. The implications of these results for the energetics of the developing leaf are discussed.  相似文献   

19.
Thylakoids isolated from winter rye (Secale cereale L. cv Puma) grown at 20°C (nonhardened rye, RNH) or 5°C (cold-hardened rye, RH) were characterized using chlorophyll (Chl) fluorescence. Low temperature fluorescence emission spectra of RH thylakoids contained emission bands at 680 and 695 nanometers not present in RNH thylakoids which were interpreted as changes in the association of light-harvesting Chl a/b proteins and photosystem II (PSII) reaction centers. RH thylakoids also exhibited a decrease in the emission ratio of 742/685 nanometers relative to RNH thylakoids.

Room temperature fluorescence induction revealed that a larger proportion of Chl in RH thylakoids was inactive in transferring energy to PSII reaction centers when compared with RNH thylakoids. Fluorescence induction kinetics at 20°C indicated that RNH and RH thylakoids contained the same proportions of fast (α) and slow (β) components of the biphasic induction curve. In RH thylakoids, however, the rate constant for α components increased and the rate constant for β components decreased relative to RNH thylakoids. Thus, energy was transferred more quickly within a PSII reaction center complex in RH thylakoids. In addition, PSII reaction centers in RH thylakoids were less connected, thus reducing energy transfers between reaction center complexes. We concluded that both PSII reaction centers and light-harvesting Chl a/b proteins had been modified during development of rye chloroplasts at 5°C.

  相似文献   

20.
The sizes of the Mn-binding sites in spinach thylakoids were estimated by target size analysis, assaying the membrane-bound Mn that was resistant to EDTA washing after radiation inactivation. The inactivation curve showed well the inactivation of two independent Mn-binding sites of different sizes: about two-thirds of the Mn coordinated to a binding site of 65 kDa, and the rest bound to a much smaller site of only about 3 kDa. In the large site, there was about 1 g atom of Mn/110 mol of chlorophyll in spinach thylakoids, which was constant in normally grown plants, although the Mn level in the small site depended on culture conditions. Thylakoids that had been incubated with hydroxylamine or in 0.8 M Tris lost Mn exclusively from the large binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号