首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light-adapted sporangiophores of the fungus Phycomyces respond to sudden darkening by a temporary decrease in the rate of elongation, after a latent period of several minutes. The reaction time of this "dark growth" response is compound like that of the "light growth" response. It is, moreover, shorter the more intense the previous illumination. The rate of dark adaptation following adaptation to a very large range of light intensities is found to be proportional to the logarithm of the preceding light intensity. It is shown that a constant amount of dark adaptation takes place before the response occurs. On the assumption that changes in the rate of growth reflect changes in the concentration of a substance which at constant light intensity is in equilibrium with a light-sensitive material, possible equations for such a photostationary state are examined. The most reasonable formulation requires that the partial velocity of the "light" reaction be taken proportional to log I instead of to I directly.  相似文献   

2.
1. The Roscoe-Bunsen law holds for the light growth response of Phycomyces if the time component of stimulation is short. With exposures longer than a few seconds, the reaction time to light is determined by the intensity and not by the energy of the flash. 2. The possible nature of the very long latency in the response to light is considered in terms of the structure of the cell and its mechanism of growth. It is suggested that during the latency some substance produced by light in the protoplasm is transported centrifugally to the cell wall or outermost layer of protoplasm. 3. The total elongation occurring over a period of 1 to 2 hours is independent of flashes of light or temporary darkening. Light acts by facilitating some change already under way in the growth system, and during the principal phase of elongation is not a necessary or limiting factor for growth. 4. Judged by the reaction time, the original sensitivity is restored in the light system following exposure to light in about one-third the time required for equilibrium to be reattained in the growth system.  相似文献   

3.
1. Ciona possesses two means of responding to an increase in the intensity of illumination. One is by means of a local reaction; the other is by a retraction reflex of the body as a whole. 2. The "ocelli" are not photoreceptors. The photosensitive area is in the intersiphonal region containing the neural mass. This area contains no pigment. 3. The reaction time to light is composed of a sensitization period during which Ciona must be exposed to the light, and of a latent period during which it need not be illuminated in order to react to the stimulus received during the sensitization period. 4. The duration of the reaction time varies inversely as the intensity. Analysis shows the latent period to be constant. The relation between the sensitization period and the intensity follows the Bunsen-Roscoe rule. 5. During dark adaptation the reaction time is at first large, then it decreases until a constant minimum is reached. 6. A photochemical system consisting of a reversible reaction is suggested in order to account for the phenomena observed. This system includes a photosensitive substance and its precursor, the dynamics of the reaction following closely the peculiarities of the photosensitivity of Ciona. 7. It is shown that in order to produce a reaction, a constant ratio must be reached between the amount of sensitive substance broken down by the stimulus and the amount previously broken down. 8. From the chemical system suggested certain experimental predictions were made. The actual experiments verified these predictions exactly. 9. The results obtained with regularly repeated stimulation not only fail to show any basis for a learning process or for the presence of a "higher behavior," but follow the requirements of the photochemical system suggested before.  相似文献   

4.
1. This investigation has been concerned with an analysis of brightness discrimination as it is influenced by the duration of ΔI. The durations used extend from 0.002 second to 0.5 second. 2. ΔI/I values at constant intensity are highest for the shortest duration and decrease with an increase in duration up to the limits of a critical exposure time. At durations longer than the critical duration the ratio ΔI/I remains constant. 3. The Bunsen-Roscoe law holds for the photolysis due to ΔI. This is shown by the fact that, within the limits of a critical duration, the product of ΔI and exposure time is constant for any value of prevailing intensity, I. 4. At durations greater than the critical duration the Bunsen-Roscoe law is superseded by the relation ΔI = Constant. This change of relation is considered in the light of Hartline''s discussion (1934). 5. The critical duration is a function of intensity. As intensity increases the critical duration decreases. 6. Hecht''s theory (1935) accounts for the data of this experiment if it be assumed that brightness discrimination is determined by a constant amount of photolysis.  相似文献   

5.
1. The Teorell, Meyer-Sievers theory characterizes the electrochemical behavior of membranes by their selectivity constant "Ap" which is derived conventionally from concentration potential measurements at various concentration levels. The selectivity constant may, however, be derived also from entirely independent, different experimental data, namely base exchange studies. The constants arrived at in this second way are designated as "Ab." The selectivity constants derived by these two methods must be in reasonable, at least semiquantitative agreement if the basic assumptions of the theory are correct. 2. The selectivity constants Ap and Ab were determined for eleven different sets of membranes of different electrochemical activity and of different (8.2 to 80 volume per cent) water content. 3. The potentiometric selectivity constants Ap are in most cases several orders of magnitude greater than the corresponding Ab values. With membranes of great porosity and high electrochemical activity the Ab values approach at least in order of magnitude the Ap values. 4. It is concluded that the unexpectedly large discrepancy between the Ap and Ab values is due to some inherent weakness of the Teorell, Meyer-Sievers theory, most likely to its neglect of any structural factors.  相似文献   

6.
1. Data are presented for the dark adaptation of four species of animals. They show that during dark adaptation the reaction time of an animal to light of constant intensity decreases at first rapidly, then slowly, until it reaches a constant minimum. 2. On the assumption that at all stages of adaptation a given response to light involves a constant photochemical effect, it is possible to describe the progress of dark adaptation by the equation of a bimolecular reaction. This supposes, therefore, that dark adaptation represents the accumulation within the sense cells of a photosensitive material formed by the chemical combination of two other substances. 3. The chemical nature of the process is further borne out by the fact that the speed of dark adaptation is affected by the temperature. The velocity constant of the bimolecular process describing dark adaptation bears in Mya a relation to the temperature such that the Arrhenius equation expresses it with considerable exactness when µ = 17,400. 4. A chemical mechanism is suggested which can account not only for the data of dark adaptation here presented, but for many other properties of the photosensory process which have already been investigated in these animals. This assumes the existence of a coupled photochemical reaction of which the secondary, "dark" reaction is catalyzed by the products of the primary photochemical reaction proper. This primary photochemical reaction itself is reversible in that its main products combine to form again the photosensitive material, whose concentration controls the behavior of the system during dark adaptation.  相似文献   

7.
1. In order to produce a response in Mya, the minimum amount of light energy required is 5.62 meter candle seconds. This energy follows the Bunsen-Roscoe law for the relation between intensity and time of exposure. 2. The necessary minimum amount of energy varies but little with the temperature; the temperature coefficient for 10°C. is 1.06. 3. In view of these facts it is concluded that the initial action of the light is photochemical in nature. This substantiates the hypothesis previously suggested to account for the mechanism of photoreception. 4. The constant energy requirement for stimulation of Mya shows that the traditional division of animals into those which respond to a constant source of light and those which respond to a rapidly augmented light is without any fundamental significance for sensory physiology.  相似文献   

8.
1. The effect on oxygen evolution of Chlorella vulgaris produced by light intensities up to about 40,000 f.-c. has been studied by the use of the Warburg technique. 2. Above a certain critical intensity, which is determined by the previous history of the cells, the rate of oxygen evolution decreases from the maximum to another constant rate. This depression is at first a completely reversible effect. 3. With a sufficiently high intensity this constant rate represents an oxygen uptake greater than the rate of dark respiration. During such a constant rate of oxygen uptake a progressive injury to the photosynthetic mechanism takes place. After a given oxygen consumption the rate falls off, approaching zero, and the cells are irreversibly injured. 4. The constant rate of oxygen evolution (2 and 3) decreases in a continuous manner with increasing light intensities, approaching a value which is approximately constant for all lots of cells regardless of previous history. 5. Two alternative hypotheses have been presented to explain the observed phenomena. The more acceptable of these proposes quick inactivation of the photosynthetic mechanism, the extent of inhibition depending on the light intensity. 6. In Chlorella vulgaris solarization is influenced by the previous history of the cells.  相似文献   

9.
1. In the photosensory process of Mya the latent period varies inversely as the intensity of the stimulating light. 2. Quantitative analysis of the data shows that the photochemical effect of the light is a logarithmic function of its intensity, the two variables being related to each other according to the well known "compound interest" law. 3. Comparison with previous experiments demonstrates that the Reciprocity Law of Bunsen and Roscoe applies to the photosensory process not only for the minimum energy required for a response, but for a much greater range of energy application as well.  相似文献   

10.
1. A single-celled, elongating sporangiophore of Phycomyces responds to a sufficient increase in intensity of illumination by a brief increase in growth rate. This is the "light-growth response" of Blaauw. 2. The reaction time is compound, consisting of an exposure period and a latent period (this comprising both the true latent period resulting from photochemical action and any "action time" necessary for the response). During the latter period the plant may be in darkness, responding nevertheless at the end of the latent period. 3. Both light adaptation and dark adaptation occur in the sporangiophore. The kinetics of dark adaptation can be accounted for on the basis of a bimolecular reaction, perhaps modified by autocatalysis. Attention is called to the bimolecular nature of the "dark" reaction in all other photosensory systems that have been studied, in spite of the diversity of the photosensitive substances themselves and of the different forms of the responses to light.  相似文献   

11.
The branchial plumes of Chromodoris respond, by contraction, to a decrease in light intensity. This response is obliterated by high temperatures (above 32°) and by direct sunlight, and is possible only within a limited range of alkalinity of the sea water. A concealing retraction of the whole gill-crown is reflexly determined by the self-contraction of the individual plumes under "optimal" conditions of light, temperature, and alkalinity. This protective response of the branchiæ is superimposed upon their simple system of fundamental activities (protrusion, retraction) apparently concerned with regulating the respiratory exchange of the nudibranch.  相似文献   

12.
The expression of galvanotropic excitation in energy units is obtained by the measurement of the current densities required to balance phototropic excitation (or reciprocally). With the triclad Leptoplana preliminary measurements show that the current is proportional to the logarithm of the light intensity.  相似文献   

13.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683–696, 2001)  相似文献   

14.
Gametophytes of the shoe-string fern Vittaria graminifolia produce linear, six-celled propagules called gemmae. The terminal cells of each gemma elongate into primary rhizoids in culture, and the inner body cells divide asymmetrically to produce prothallial or rhizoid initials. The initiation of both asymmetric cell division and rhizoid elongation is delayed by light intensities greater than 2 w/m2. The maximal rates of cell division and rhizoid elongation are unaltered. A 24-hr pulse of high light intensity delays cell division and rhizoid elongation to the same extent, whenever applied during the first 3 d of culture. The model we propose for cell division hypothesizes the existence of a preparatory phase of finite duration prior to mitosis that is sensitive to light intensity. If a cell is irradiated by light intensities greater than 2 w/m2 while in the preparatory phase, its entrance into mitosis is delayed. A similar model is proposed for the initiation of rhizoid elongation. Despite the fact that both cell division and rhizoid elongation are dependent on photosynthesis, direct measurements of CO2-uptake rates show that the inhibitory effects of high light intensities are not due to an inhibition of photosynthesis.  相似文献   

15.
1. An optical system is described which furnishes an intensity of 282,000 meter candles at the bottom of a Warburg manometric vessel. With such a high intensity available it was possible to measure the rate of photosynthesis of single fronds of Cabomba caroliniana over a large range of intensities and CO2 concentrations. 2. The data obtained are described with high precision by the equation KI = p/(p 2 max.p 2)½ where p is the rate of photosynthesis at light intensity I, K is a constant which locates the curve on the I axis, and p max. is the asymptotic maximum rate of photosynthesis. With CO2 concentration substituted for I, this equation describes the data of photosynthesis for Cabomba, as a function of CO2 concentration. 3. The above equation also describes the data obtained by other investigators for photosynthesis as a function of intensity, and of CO2 concentration where external diffusion rate is not the limiting factor. This shows that for different species of green plants there is a fundamental similarity in kinetic properties and therefore probably in chemical mechanism. 4. A derivation of the above equation can be made in terms of half-order photochemical and Blackman reactions, with intensity and CO2 concentration entering as the first power, or if both sides of the equation are squared, the photochemical and Blackman reactions are first order and intensity and CO2 enter as the square. The presence of fractional exponents or intensity as the square suggests a complex reaction mechanism involving more than one photochemical reaction. This is consistent with the requirement of 4 quanta for the reduction of a CO2 molecule.  相似文献   

16.
17.
1. The effect of poisons upon the photoreduction with hydrogen in Scenedesmus and similar algae has been studied. The poisons used were cyanide, hydroxylamine, dinitrophenol, and carbon monoxide, substances known to inhibit more or less specifically certain enzymatic reactions. 2. It was found that quite generally one has to distinguish between the action of poisons upon the photoreduction in the stationary state, once this type of metabolism has been well established in the cells, and their effects on transition phenomena, on the "adaptation" and its reversal, the "turnback" from photoreduction to photosynthesis. 3. Cyanide inhibits photoreduction more strongly than it inhibits photosynthesis in the same algae. It is concluded that the mechanism of oxygen liberation, which is idle in photoreduction, is not very sensitive to cyanide. 4. Hydroxylamine in low concentrations is a powerful inhibitor of photosynthesis but has practically no influence on the rate of photoreduction. Consequently, it is assumed that it acts in photosynthesis mainly by inhibiting the evolution of oxygen. Greater concentrations of hydroxylamine clearly inhibit photoreduction, but diminish the rate to about one-half only. A greater degree of inhibition is obtained only by prolonged incubation. 5. Dinitrophenol was found to inhibit strongly the reduction of carbon dioxide, under aerobic as well as under anaerobic conditions. A stimulating effect of dinitrophenol can be demonstrated only with respiration or fermentation, not with photosynthesis. 6. Carbon monoxide interferes with all phases of the hydrogen metabolism in algae. It is supposed therefore to be a specific inhibitor for the hydrogenase system. 7. The "adaptation" to the hydrogen metabolism, which takes place if the algae are incubated anaerobically in hydrogen for several hours, is inhibited completely by very small amounts of cyanide. The adaptation reaction is more sensitive to cyanide than most of the other metabolic processes in the same cell. Correspondingly cyanide enhances the return to aerobic conditions, the "turnback," which occurs under the influence of light of high intensities. 8. Hydroxylamine, applied aerobically, inhibits the adaptation reaction to about the same degree as it inhibits photosynthesis. Photoreduction proceeds after the adaptation in presence of hydroxylamine only at a fraction of the rate that it would have if the poison were added later. 9. Hydroxylamine in concentrations of 10–3 M protects the anaerobic metabolism against the return to aerobic photosynthesis which normally occurs under the influence of light of too high intensity. The protection is only relative and the higher the light intensity the more hydroxylamine is needed to keep photoreduction going. Once a "turnback" occurs in presence of much hydroxylamine all photochemical gas exchange comes to an end.  相似文献   

18.
Controlled environment culture studies have disclosed that Pikea californica has a life history with morphologically dissimilar gametangial and tetrasporangial phases. The effects of light intensity and photoperiod on tetrasporogenesis, cell division, and, cell elongation in the tetrasporangial phase of P. californica are discussed.  相似文献   

19.
The intensity of light required to just counterbalance geotropic orientation of young rats, with eyelids unopened, is so related to the angle of inclination (α) of the creeping plane that the ratio log I/log sin α is constant. This relationship, and the statistical variability of I as measured at each value of α, may be deduced from the known phototropic and the geotropic conduct as studied separately, and affords proof that in the compounding of the two kinds of excitation the rat is behaving as a machine.  相似文献   

20.
1. The rapid decay of luminescence in extracts of the ostracod crustacean Cypridina hilgendorfii, has been studied by means of a photoelectric-amplifier-string galvanometer recording system. 2. For rapid flashes of luminescence, the decay is logarithmic if ratio of luciferin to luciferase is small; logarithmic plus an initial flash, if ratio of luciferin to luciferase is greater than five. The logarithmic plot of luminescence intensity against time is concave to time axis if ratio of luciferin to luciferase is very large. 3. The velocity constant of rapid flashes of luminescence is approximately proportional to enzyme concentration, is independent of luciferin concentration, and varies approximately inversely as the square root of the total luciferin (luciferin + oxyluciferin) concentration. For large total luciferin concentrations, the velocity constant is almost independent of the total luciferin. 4. The variation of velocity constant with total luciferin concentration (luciferin + oxyluciferin) and its independence of luciferin concentration is explained by assuming that light intensity is a measure of the luciferin molecules which become activated to oxidize (accompanied with luminescence) by adsorption on luciferase. The adsorption equilibrium is the same for luciferin and oxyluciferin and determines the velocity constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号