首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Steady and transient behaviors of protoplasmic streaming in Nitella internodal cell have been investigated for various temperatures from 30°C to near 0°C. It has been found that steady velocity of the streaming linearly decreases with increasing inverse temperature but its proportionality coefficient changes at ~ 10°C. Velocity distribution, which reflects temporal fluctuations of the protoplasmic streaming, is nonGaussian and its half width becomes larger at higher temperatures. On the other hand, recovery of the protoplasmic streaming, which is observed after stopping the streaming with a current stimulus to the internodal cell, has been found to show more clear sigmoidal time courses at higher temperatures.  相似文献   

2.
The speed of translatory movement of Beggiatoa alba is governed by temperature in such a way that between 5° and 33° the temperature characteristics µ = 16,100 and µ = 8,400 respectively obtain for the temperature ranges 5° to 16.5° and 16.5° to 33°. The "break" at 16°–17° is emphasized by the occurrence of a wider latitude of variation in speed above this temperature. Above 16° the progression of Thiothrix yields µ = 8,300. The possible relation of these values to that previously obtained for similar movement in (photosynthetic) Oscillatoria is commented upon.  相似文献   

3.
The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory.  相似文献   

4.
The temperature characteristic of respiration of Azotobacter vinelandii possesses a constant value of 19,330 ± 165 over the temperature range 20–30°C. This value is independent of pH, oxygen tension, age of culture, and other factors within the limits studied. The optimum temperature of respiration is 34–35°C., with limits at about 10° and 50°C.  相似文献   

5.
The rate of oxygen consumption by germinating seeds of Lupinus albus and of Zea mays was studied as a function of temperature (7–26°C.). The Warburg manometer technique was used, with slight modifications. Above and below a critical temperature at 19.5°C. the temperature characteristic for oxygen consumption by Lupinus albus was found to be µ = 11,700± and 16,600 respectively. The same critical temperature was encountered in the case of Zea mays, with temperature characteristics µ = 13,100± above and µ = 21,050 below that temperature.  相似文献   

6.
1. The investigations dealing with the properties of casein as an acid were reviewed. 2. The solubility of uncombined casein in water was measured at 5°C. and found to be 0.70±0.1 mg. of N per 100 gm. of water. 3. Robertson''s solubility measurements of casein in bases at various temperatures were recalculated and found to agree well with more recent measurements. 4. By combining the observations of several investigators, as well as the author''s measurements of the solubility of casein, in base, at various temperatures, the following conclusions were reached: (a) The solubility of casein in base is affected by the temperature in a discontinuous manner. (b) There exist two ranges of temperature, one, extending from about 21° to 37°C. and the other from about 60° to 85°C. where the solubility of casein in base is practically independent of temperature. (c) From 37° to 60° the equivalent combining weight of casein rises from the value 2100 to about 3700 gm. 5. By comparing the values of base bound by 1 gm. of casein at the two temperature ranges with a constant, the value of base necessary to saturate the same amount of casein, it was found that the latter value is a common multiple of the former values, indicating the stoichiometric nature of the effect of temperature.  相似文献   

7.
1. The method is described whereby the rate of flow produced by the gills of the oyster can be measured accurately. 2. The rate of doing work in maintaining a constant current along the glass tube can be expressed by the formula W = 2πlµ S 2, where W = ergs/sec., l = length of the tube, µ = viscosity in poises, and S = speed at the axis of the tube. 3. The relationship between the rate of doing work and the temperature cannot be described by the equation of Arrhenius. 4. The optimum temperature for the mechanical activity of the gills lies between 25° and 30°C. Below 5° no current is produced, though the cilia are beating. Ciliary motion stops entirely at the freezing temperature of sea water. 5. The factors responsible for the production of current are discussed. The study of the relations between the variability of the rate of flow and the temperature shows that between 15° and 25°C. the absolute variability remains constant and increases considerably above 25° and below 15°. The rôle of the coordination in the production of current is discussed, and the conclusion is reached that coordination is affected by the changes in temperature.  相似文献   

8.
1. Whitefish eggs incubated in aerated lake water at controlled tempera tures of 0°, 0.5°, 2°, 4°, 6°, 8°, 10°, and 12°C., failed to hatch at either 0° or 12°C. 0.6 per cent hatched alive at 10°C., 72.67 per cent hatched alive at 0.5°C., and an intermediate proportion hatched at intermediate temperatures. 2. The percentage of abnormal embryos which developed to the hatching stage varied directly with temperature between 4° and 12°, all embryos being abnormal at 12°C.; but none were abnormal at either 0.5°, or 2°C. Normal development predominated from 0.5 to 6°C. The highest proportion of embryos to hatch alive was 72.67 per cent at 0.5°C., which is, hence, the optimum temperature. 3. Total incubation time ranged from 29.6 days at 10°C. to 141 days at 0.5°C. 4. The time (T) required to attain any given stage of development is expressed in equations See PDF for Equation where temperature, t, is a negative exponent of the constant, A, whose value differs above or below 6°C., a critical temperature. Values of A above 6° fluctuate about 1.13; those of A below 6° fluctuate about 1.19 as a mean. 5. Applying Arrhenius'' equation µ values for the total incubation period are 27,500 below 6° and 27,100 above it. 6. The relative magnitude of A values of the exponential equation and µ values of Arrhenius'' equation show corresponding changes from one developmental period to another. 7. When plotted, thermal increments show cyclic variations, with maxima during periods of cleavage and of organogenesis. These may indicate the interaction of two separate sets of embryonic processes, which give a maximal response to temperature differences during these two separate periods. 8. Above 6°, µ values during the hatching process are distinct from those of developmental stages and are regarded as being due to the action of hatching enzymes.  相似文献   

9.
Young mice of a selected line of the dilute brown strain of mice exhibit over the range 15–25°C. (body temperature) a relation of frequency of breathing movements to temperature such that when fitted by the Arrhenius equation the data give a value for the constant µ of 24,000± calories or, less frequently, 28,000±. Young mice of an inbred albino strain show over the range 15–20°C. a value of µ = 34,000±, or, less frequently, 14,000±, with a critical temperature at about 20°C. and a value of µ = 14,000± above 20°C. The F1 hybrids of these two strains, and the backcross generations to either parent strain, exhibit only those four values of the temperature characteristic observed in the parent strains and none other. One may therefore speak of the inheritance of the value of the constant µ, but the inheritance shows in this instance no Mendelian behavior. Furthermore there appears to be inherited the occurrence (or absence) of a critical temperature at 20°C. These experiments indicate the "biological reality" of the temperature characteristics.  相似文献   

10.
Further evidence for fibrillar organization of the ground cytoplasm of Chaos chaos is presented. Fixations with osmium tetroxide at pH 6 or 8 and with glutaraldehyde at pH 6 or 7 were used on two preparations: (a) single actively streaming cells; (b) prechilled cells treated with 0.05% Alcian blue in the cold and returned to room temperature for 5–10 min. In addition, a 50,000 g pellet of homogenized cells was examined after fixation with glutaraldehyde-formaldehyde alone. In sections from actively streaming cells considerable numbers of filaments were observed in the uroid regions after glutaraldehyde fixation, whereas only traces of filaments were seen after osmium tetroxide fixation at either pH 6 or 8. Microtubules were not seen. In sections from dye-treated cells, filaments (4–6 mµ) and fibrils (12–15 mµ) were found with all three fixatives. The 50,000 g pellet was heterogeneous but contained both clumps of fibrils and single thick fibrils like those seen in the cytoplasm of dye-treated cells. Many fibrils of the same dimensions (12–15 mµ wide, 0.5 µ long) were also seen in the supernatant above the pellet. Negative staining showed that some fibrils separated into at least three strands of 4–6 mµ filaments.  相似文献   

11.
Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C.  相似文献   

12.
The temperature characteristic for the rate of O2 consumption by Chlorella pyrenoidosa suspended in Knop solution containing 1 per cent glucose was studied between 1° and 27°C. with the Warburg technic. The value of µ was found to be about 19,000 ±1,000 cal. There is some indication of a critical temperature at 20°C., with shift to a lower µ above this temperature. The effect of sudden changes in temperature on the rate of respiration and the variation of the latter with time at constant temperatures are discussed. It is concluded that the "normal" respiration (in absence of external glucose) does not appear in the determination of this temperature characteristic.  相似文献   

13.
Webb JA 《Plant physiology》1967,42(6):881-885
A study has been made of the temperature control of translocation localized to regions of the stem, petiole and hypocotyl of Cucurbita melopepo. The basipetal and acropetal movement of translocated 14C-labeled compounds in the phloem tissue, measured over a 45-minute period, was almost completely inhibited at 0°. At 10° a partial inhibition occurred while an extremely variable degree of inhibition occurred at 15°. Above 15° to 35° temperature ceased to be a limiting factor in the movement of 14C-labeled compounds. At 45° partial inhibition was observed while at 55° there was an almost complete cessation. The localized temperature treatment of the plant parts did not disturb the rate of 14CO2 assimilation or the export of 14C compounds by the leaf blade. Translocated compounds unable to pass a temperature inhibited zone were diverted toward other importing regions of the plant. The similarity of the translocation response to temperature change in the various organs of the plant indicated a uniform mechanism throughout the plant controlling movement of the major proportion of the translocated compounds. The temperature characteristics of the mechanism were found to closely parallel those of protoplasmic streaming in chill-sensitive plants.  相似文献   

14.
1. Mackerel egg development was followed to hatching at constant temperatures of 10°, 11°, 12°, 13°, 14°, 15°, 16°, 17°, 18°, 19°, 20°, 21°, 22°, and 24°C. Experiment showed that typical development could be realized only between 11° and 21°. 2. The length of the developmental period increases from 49.5 hours to 207 hours when the temperature is lowered from 21° to 10°C. 3. The calculated µ for the development of the mackerel egg is about 19,000 at temperatures above 15° and approximately 24,900 for temperatures below 15°C. 15° is, apparently, a critical temperature for this process. 4. The calculated values of µ for eight stages of development preceding hatching, i.e. 6 somites, 12 somites, 18 somites, 24 somites, three-quarters circles, four-fifths circles, five-sixths circles, and full circles, are essentially the same as the µ''s for hatching, indicating that the rate of differentiation up to hatching is governed by one process throughout. Critical temperatures for these stages approximate 15°. 5. The total mortality during the incubation period was least at 16°C. where it amounted to 43 per cent. At temperatures above and below this there was a steady increase in the percentage of mortality which reached 100 per cent at 10° and 21°.  相似文献   

15.
Burke JJ 《Plant physiology》1990,93(2):652-656
The relationship between the thermal dependence of the reappearance of chlorophyll variable fluorescence following illumination and temperature dependence of the apparent Michaelis constant (Km) of NADH hydroxypyruvate reductase for NADH was investigated in cool and warm season plant species. Brancker SF-20 and SF-30 fluorometers were used to evaluate induced fluorescence transients from detached leaves of wheat (Triticum aestivum L. cv TAM-101), cotton (Gossypium hirsutum L. cv Paymaster 145), tomato (Lycopersicon esculentum cv Del Oro), bell pepper (Capsicum annuum L. cv California Wonder), and petunia (Petunia hybrida cv. Red Sail). Following an illumination period at 25°C, the reappearance of variable fluorescence during a dark incubation was determined at 5°C intervals from 15°C to 45°C. Variable fluorescence recovery was normally distributed with the maximum recovery observed at 20°C in wheat, 30°C in cotton, 20°C to 25°C in tomato, 30 to 35°C in bell pepper and 25°C in petunia. Comparison of the thermal response of fluorescence recovery with the temperature sensitivity of the apparent Km of hydroxypyruvate reductase for NADH showed that the range of temperatures providing fluorescence recovery corresponded with those temperatures providing the minimum apparent Km values (viz. the thermal kinetic window).  相似文献   

16.
Suspensions of the yeast Saccharomyces cerevisiae gave reproducible rates of O2 uptake over a period of 6 months. The relation of rate of consumption of O2 to temperature was tested over a wide range of temperatures, and the constant in the formulation of the relationship is found to be reproducible. The values of this constant (µ) have been obtained for five separate series of experiments by three methods of estimation. The variability of µ has the following magnitudes: the average deviation of a single determination expressed as per cent of the mean is ±2 per cent in the range 30–15°, and ±0.8 per cent in the range 15–3°C. This constancy of metabolic activity measured as a function of temperature can then be utilized for more precise investigations of processes controlling the velocity of oxidations of substrates, and of respiratory systems controlled by intracellular respiratory pigments. The data plotted according to the Arrhemus equation give average values of the constant µ as follows: for the range 35–30°, µ = 8,290; 30–15°, µ = 12,440 ±290; 15–3°, µ = 19,530 ±154. The critical temperatures are at 29.0° and 15.7°C. A close similarity exists between these temperature characteristics (µ) and values in the series usually obtained for respiratory activities in other organisms. This fact supports the view that a common system of processes controls the velocities of physiological activities in yeast and in other organisms.  相似文献   

17.
1. Most wild stocks of Drosophila melanogaster can be bred indefinitely on banana agar at a temperature of 31°C. There is no relation between the geographical origin of these stocks and their ability to tolerate this temperature. 2. A single wild stock has been found which will breed for only one generation at temperatures above 29°C. The offspring hatched at 31°C. will breed normally at 24°C. This difference from other wild stocks is apparently genetic, but its genetic basis has not yet been worked out. 3. The mutant stocks of D. melanogaster tested by us will breed for only one generation at 31°C. and their offspring at this temperature are also fertile at 24°C. This condition is apparently a physiological effect of the presence of any of the mutant genes in a homozygous condition. 4. Similar tests indicate that wild stocks of D. virilis and Chymomyza procnemis will breed at 31°C., while D. simulans, D. immigrans, and D. funebris will not. The last two species are northern forms not commonly found in the tropics. 5. Both male and female flies from mutant stocks hatched at 31°C. produce offspring at this temperature if mated to flies hatched at 24°C. Their germ cells are therefore capable of development, and the cause of their failure to develop at 31°C. when inbred must lie either in the failure of the germ cells to reach each other or in the fertilization process itself.  相似文献   

18.
The rates of production of CO2 by germinating seeds of Lupinus albus and Zea mays were studied between temperatures 12.5° and 25°C. with the HCl-Ba(OH)2 titration method. The temperature characteristics found are different from those previously obtained for the oxygen consumption of the same seeds germinated in the same manner. For Lupinus, the temperature characteristics above and below the critical temperature of 20° are 16,100 ± and 24,000 ± calories respectively. For Zea, no evidence of a critical temperature was found in this region, and the temperature characteristic is 20,750 ± calories throughout the range of temperature tested. The possible interpretations of the difference in the values of temperature characteristics for oxygen consumption and for production of CO2 are noted.  相似文献   

19.
1. The rate of pulsation of the anterior contractile vacuole of Paramecium caudatum under chloretone anesthesia has been determined over a range of temperatures from 9–31°C. It has been found that the rate is a logarithmic function of the temperature according to the Arrhenius equation. From 9–16° the temperature characteristic (µ) has the value 25,600; from 16–22° it is 18,900; and from 22–31° it becomes 8,600. 2. It is concluded that there are at least three underlying reactions responsible for pulsation, the rates of which vary. Which reaction becomes the limiting one depends upon the range of temperature considered. 3. It does not appear that oxidative processes alone determine the rate of pulsation, although they may be of fundamental importance.  相似文献   

20.
The frequency of pulsation of the intact heart in nymphs (final (?) instar) of Blatta orientalis L. increases with the temperature according to the equation of Arrhenius. The constant µ has typically the same value, within reasonable limits of error, as that (12,200) deduced for other, homologous activities of arthropods where the rate of central nervous discharge is perhaps the controlling element, namely 12,500 ± calories for temperatures 10–38°C. Below a critical temperature of about 10° a change to a higher value of the temperature characteristic occurs, such that µ = 18,100 ±. Exceptionally (one individual) µ = 14,100 ± over the whole range of observed temperature (4.5–28°). The quantitative correspondence of µ for frequency of heart beat in different arthropods adds weight to the conception that this constant may be employed for the recognition of controlling processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号