首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The titration data of edestin show that all the arginine found on hydrolysis exists in this protein as "prearginine." The extra ionizable groups of histidine, lysine and tyrosine are free in the quantities found on hydrolysis. Part of the extra carboxyl groups of aspartic and glutamic acids are bound as amides, and 50 per cent are bound in some other manner (perhaps anhydride) leaving only about 6 per cent of these groups free to ionize in edestin. The prearginine in edestin is not converted into arginine on hydrolysis with pepsin up to 18 per cent (of the total hydrolysis). In more highly hydrolyzed solutions it is not possible to detect such a conversion, due to high buffering. Complete hydrolysis however converts prearginine into arginine which can be isolated. Hydrolyzed edestin promotes the growth of sarcomatous fibroblasts about equally well whether 5, 14 or 18 per cent hydrolyzed.  相似文献   

2.
The author corroborates the data of Schmidt showing that the dissociation index of the third group of arginine is pK3'' = 12.5. New titration data of edestin have been obtained in very alkaline solutions and show that there is a corresponding group with a titration index of pG'' = 12.0, but present in much less quantity than can account for the arginine found on hydrolysis. The data support the theory that the combination of strong base or strong acid with proteins is produced by the formation of salts with the "extra groups" of those trivalent amino acids which can be isolated from the protein, with the exception of arginine. Arginine contributes to the titration curve in much smaller amount than is found on hydrolysis. This deficiency in the arginine group may be accounted for by the basic group in proteins having a titration index of pG'' = 3.8 to 4.6 (depending on the protein), which apparently yields arginine on hydrolysis, and may properly be called prearginine.  相似文献   

3.
1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl2, and Na2SO4 affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl3 or Na4Fe(CN)6. These latter salts produce a high P.D. on the isoelectric particles, LaCl3 making them positively and Na4Fe(CN)6 making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl3 but not by NaCl or CaCl2, and which is reversed by Na4Fe(CN)6, the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na4Fe(CN)6 but practically not at all by Na2SO4 or NaCl, and which is reversed by LaCl3. the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are precipitated when the cataphoretic P.D. falls below a certain critical value, while water-soluble proteins, e.g. genuine crystalline egg albumin or gelatin, stay in solution even if the P.D. of the particles falls below the critical P.D.  相似文献   

4.
1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz''s rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.  相似文献   

5.
1. Gelatin solutions have a high viscosity which in the case of freshly prepared solutions varies under the influence of the hydrogen ion concentration in a similar way as the swelling, the osmotic pressure, and the electromotive forces. Solutions of crystalline egg albumin have under the same conditions a comparatively low viscosity which is practically independent of the pH (above 1.0). This difference in the viscosities of solutions of the two proteins seems to be connected with the fact that solutions of gelatin have a tendency to set to a Jelly while solutions of crystalline egg albumin show no such tendency at low temperature and pH above 1.0. 2. The formulæ for viscosity demand that the difference in the order of magnitude of the viscosity of the two proteins should correspond to a difference in the relative volume occupied by equal masses of the two proteins in the same volume of solution. It is generally assumed that these variations of volume of dissolved proteins are due to the hydration of the isolated protein ions, but if this view were correct the influence of pH on viscosity should be the same in the case of solutions of gelatin, of amino-acids, and of crystalline egg albumin, which, however, is not true. 3. Suspensions of powdered gelatin in water were prepared and it was found, first, that the viscosity of these suspensions is a little higher than that of gelatin solutions of the same concentration, second, that the pH influences the viscosity of these suspensions similarly as the viscosity of freshly prepared gelatin solutions, and third, that the volume occupied by the gelatin in the suspension varies similarly as the viscosity which agrees with the theories of viscosity. It is shown that this influence of the pH on the volume occupied by the gelatin granules in suspension is due to the existence of a Donnan equilibrium between the granules and the surrounding solution.  相似文献   

6.
1.25 per cent gelatin solutions containing enough NaOH to bring them to pH 7.367 (or KOH to pH 7.203) were made up with various concentrations of NaCl, KCl and MgCl2, alone and in mixtures, up to molar ionic strength. The effects of these salts on the pH were observed. MgCl2 and NaCl alone lower the pH of the Na gelatinate or the K gelatinate, in all amounts of these salts. KCl first lowers the pH (up to 0.01 M K+), then raises the pH. Mixtures of NaCl and KCl (up to 0.09 M of the salt whose concentration is varied) raise the pH; then (up to 0.125 M Na+ or K+) lower the pH; and finally (above 0.125 M) behave like KCl alone. Mixtures of MgCl2 and NaCl raise the pH up to 0.10 M Na+, and lower it up to 0.15 M Na+ regardless of the amount of MgCl 2. Higher concentrations of NaCl have little effect, but the pH in this range of NaCl concentration is lowered with increase of MgCl2. Mixtures of MgCl2 and KCl behave as above described (for MgCl2 and NaCl) and the addition of NaCl plus KCl to gelatin containing MgCl2 produces essentially the same effect as the addition of either alone, except that the first two breaks in this curve come at 0.07 M and 0.08 M [Na+ + K+] and there is a third break at 0.12 M. In this pH range the free groups of the dicarboxylic acids and of lysine are essentially all ionized and the prearginine and histidine groups are essentially all non-ionized. The arginine group is about 84 per cent ionized. Hence we are studying a solution with two ionic species in equilibrium, one with the arginine group ionized, and one with it non-ionized. It is shown that the effect of each salt alone depends upon the effect of the cation on the activity of these two species due to combination. The anomalous effects of cation mixtures may be qualitatively accounted for if one or both of these species fail to combine with the cations in a mixture in proportion to the relative combination in solutions of each cation alone. Special precautions were taken to ensure accuracy in the pH measurements. The mother solutions gave identical readings to 0.001 pH and the readings with salts were discarded when not reproducible to 0.003 pH. All doubtful data were discarded.  相似文献   

7.
1. Our results show clearly that the Hofmeister series is not the correct expression of the relative effect of ions on the swelling of gelatin, and that it is not true that chlorides, bromides, and nitrates have "hydrating," and acetates, tartrates, citrates, and phosphates "dehydrating," effects. If the pH of the gelatin is taken into considertion, it is found that for the same pH the effect on swelling is the same for gelatin chloride, nitrate, trichloracetate, tartrate, succinate, oxalate, citrate, and phosphate, while the swelling is considerably less for gelatin sulfate. This is exactly what we should expect on the basis of the combining ratios of the corresponding acids with gelatin since the weak dibasic and tribasic acids combine with gelatin in molecular proportions while the strong dibasic acid H2SO4 combines with gelatin in equivalent proportions. In the case of the weak dibasic acids he anion in combination with gelatin is therefore monovalent and in the case of the strong H2SO4 it is bivalent. Hence it is only the valency and not the nature of the ion in combination with gelatin which affects the degree of swelling. 2. This is corroborated in the experiments with alkalies which show that LiOH, NaOH, KOH, and NH4OH cause the same degree of swelling at the same pH of the gelatin solution and that this swelling is considerably higher than that caused by Ca(OH)2 and Ba(OH)2 for the same pH. This agrees with the results of the titration experiments which prove that Ca(OH)2 and Ba(OH)2 combine with gelatin in equivalent proportions and that hence the cation in combination with the gelatin salt with these two latter bases is bivalent. 3. The fact that proteins combine with acids and alkalies on the basis of the forces of primary valency is therefore not only in full agreement with the influence of ions on the physical properties of proteins but allows us to predict this influence qualitatively and quantitatively. 4. What has been stated in regard to the influence of ions on the swelling of the different gelatin salts is also true in regard to the influence of ions on the relative solubility of gelatin in alcohol-water mixtures. 5. Conductivity measurements of solutions of gelatin salts do not support the theory that the drop in the curves for swelling, osmotic pressure, or viscosity, which occurs at a pH 3.3 or a little less, is due to a drop in the concentration of ionized protein in the solution; nor do they suggest that the difference between the physical properties of gelatin sulfate and gelatin chloride is due to differences in the degree of ionization of these two salts.  相似文献   

8.
1. 1 cc. of 0.001 M ferricyanide, tetrathionate, or p-chloromercuribenzoate is required to abolish the SH groups of 10 mg. of denatured egg albumin in guanidine hydrochloride or Duponol PC solution. Both the nitroprusside test and the ferricyanide reduction test are used to show that the SH groups have been abolished. 2. 1 cc. of 0.001 M ferrocyanide is formed when ferricyanide is added to 10 mg. of denatured egg albumin in neutral guanidine hydrochloride or urea solution. The amount of ferricyanide reduced to ferrocyanide by the SH groups of the denatured egg albumin is, within wide limits, independent of the ferricyanide concentration. 3. Ferricyanide and p-chloromercuribenzoate react more rapidly than tetrathionate with the SH groups of denatured egg albumin in both guanidine hydrochloride solution and in Duponol PC solution. 4. Cyanide inhibits the oxidation of the SH groups of denatured egg albumin by ferricyanide. 5. Some samples of guanidine hydrochloride contain impurities which bring about the abolition of SH groups of denatured egg albumin and so interfere with the SH titration and the nitroprusside test. This interference can be diminished by using especially purified guanidine hydrochloride, adding the titrating agent before the protein has been allowed to stand in guanidine hydrochloride solution, and carrying out the nitroprusside test in the presence of a small amount of cyanide. 6. The SH groups of egg albumin can be abolished by reaction of the native form of the protein with iodine. It is possible to oxidize all the SH groups with iodine without oxidizing many of the SH groups beyond the S-S stage and without converting many tyrosine groups into di-iodotyrosine groups. 7. p-chloromercuribenzoate combines with native egg albumin either not at all or much more loosely than it combines with the SH groups of denatured egg albumin or of cysteine. 8. The compound of mercuribenzoate and SH, like the compound of aldehyde and SH and like the SH in native egg albumin, does not give a nitroprusside test or reduce ferricyanide but does reduce iodine.  相似文献   

9.
The activities of ornithine transcarbamylase, arginine synthetase and arginase in the liver of rats receiving basal diets containing 25% casein supplemented respectively with arginine, aspartic acid, glutamic acid, glycine, a mixture of arginine, aspartic acid and glutamic acid, egg albumin, casein, wheat gluten and gelatin have been determined.

These urea cycle enzymes in rats receiving diets supplemented with the various nitrogen sources were generally increased, but the increments were due to the increase of the ingested amount of nitrogen, and not the specific effect of the individual amino acids or proteins. The excretion of urinary urea in general was increased proportionally with the elevations of these enzyme activities, independent of the nature of the dietary nitrogen.  相似文献   

10.
Catalysis of Slow C-Terminal Processing Reactions by Carboxypeptidase H   总被引:2,自引:1,他引:1  
A hypothesis was examined that carboxypeptidase H (CpAse H), which is known to catalyse the release of lysine and arginine from the C-terminus of peptides, can also release histidine, tyrosine, and phenylalanine. Synthetic peptides terminating in -His-Lys or -Tyr-Lys were used as model substrates for the enzyme and amino acid analysis was employed to detect release of the terminal amino acids. With N-acetyl-beta-Ala-Asn-Ala-His-Lys and N-acetyl-beta-Ala-Asn-Ala-Tyr-Lys, which correspond to intermediates in the processing of porcine and human beta-endorphin, lysine was removed rapidly and quantitatively but no release of histidine or tyrosine could be detected. To allow more sensitive analysis, radiolabelled substrates were employed and the amounts of the products formed on incubation with CpAse H were determined after separation by ion-exchange chromatography. With 125I-D-Tyr-Ala-His-Lys-Lys as substrate at pH 5.7, very small amounts of D-Tyr-Ala were released; the main product was D-Tyr-Ala-His. At pH 5.0 the release of histidine from 125I-D-Tyr-Ala-His took place 6,000 times more slowly than the release of lysine from 125I-D-Tyr-Ala-Lys. When the tripeptides were incubated at pH 5 with porcine pituitary secretory granules, the lysine was released rapidly but no release of histidine could be detected. The results demonstrate that CpAse H catalyses the release of C-terminal histidine with great difficulty.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1, 2-Cyclohexanedione reacts specifically with the guanidino group of arginine or arginine residues at pH 8 to 9 in sodium borate buffer in the temperature range of 25-40 degrees. The single product, N-7, N-8-(1,2-dihydroxycyclohex-1,2-ylene)-L-arginine (DHCH-arginine) is stable in acidic solutions and in borate buffers (pH 8 to 9). DHCH-Arginine is converted to N-7-adipyl-L-arginine by periodate oxidation. The structures of the two compounds were elucidated by chemical and physicochemical means. Arginine or arginyl residues can be regenerated quantitatively from DHCH-arginine by incubation at 37 degrees in hydroxylamine buffer at pH 7.0 FOR 7 TO 8 hours. Analysis of native egg white lysozyme and native as well as oxidized bovine pancreatic RNase, which were treated with cyclohexanedione, showed that only arginine residues were modified. The utility of the method in sequence studies was shown on oxidized bovine pancreatic ribonuclease A. Arginine modification was complete in 2 hours at 35 degrees in borate buffer at pH 9.0 with a 15-fold molar excess of the reagent. The derived peptides showed that tryptic hydrolysis was entirely limited to peptide bonds involving lysine residues, as shown both by two-dimensional peptide patterns and by isolation of the resulting peptides. The stability of DHCH-arginyl residues permits isolation of labeled peptides.  相似文献   

12.
1. The method of removing the excess of hydrobromic acid after it has had a chance to react chemically with gelatin has permitted us to measure the amount of Br in combination with the gelatin. It is shown that the curves representing the amount of bromine bound by the gelatin are approximately parallel with the curves for the osmotic pressure, the viscosity, and swelling of the gelatin solution. This proves that the curves for osmotic pressure are an unequivocal function of the number of gelatin bromide molecules formed under the influence of the acid. The cc. of 0.01 N Br in combination with 0.25 gm, of gelatin we call the bromine number. 2. The explanation of this influence of the acid on the physical properties of gelatin is based on the fact that gelatin is an amphoteric electrolyte, which at its isoelectric point is but sparingly soluble in water, while its transformation into a salt with a univalent anion like gelatin Br makes it soluble. The curve for the bromine number thus becomes at the same time the numerical expression for the number of gelatin molecules rendered soluble, and hence the curve for osmotic pressure must of necessity be parallel to the curve for the bromine number. 3. Volumetric analysis shows that gelatin treated previously with HBr is free from Br at the isoelectric point as well as on the more alkaline side from the isoelectric point (pH ≧ 4.7) of gelatin. This is in harmony with the fact that gelatin (like any other amphoteric electrolyte) can dissociate on the alkaline side of its isoelectric point only as an anion. On the more acid side from the isoelectric point gelatin is found to be in combination with Br and the Br number rises with the pH. 4. When we titrate gelatin, treated previously with HBr but possessing a pH = 4,7, with NaOH we find that 25 cc. of a 1 per cent solution of isoelectric gelatin require about 5.25 to 5.5 cc. of 0.01 N NaOH for neutralization (with phenolphthalein as an indicator). This value which was found invariably is therefore a constant which we designate as "NaOH (isoelectric)." When we titrate 0.25 gm. of gelatin previously treated with HBr but possessing a pH < 4.7 more than 5.5 cc. of 0.01 N NaOH are required for neutralization. We will designate this value of NaOH as "(NaOH)n," where n represents the value of pH. If we designate the bromine number for the same pH as "Brn" then we can show that the following equation is generally true: (NaOH)n = NaOH (isoelectric) + Brn. In other words, titration with NaOH of gelatin (previously treated with HBr) and being on the acid side of its isoelectric point results in the neutralization of the pure gelatin (NaOH isoelectric) with NaOH and besides in the neutralization of the HBr in combination with the gelatin. This HBr is set free as soon as through the addition of the NaOH the pH of the gelatin solution becomes equal to 4.7. 5. A comparison between the pH values and the bromine numbers found shows that over 90 per cent of the bromine or HBr found was in our experiments in combination with the gelatin.  相似文献   

13.
1. This paper contains experiments on the influence of acids and alkalies on the osmotic pressure of solutions of crystalline egg albumin and of gelatin, and on the viscosity of solutions of gelatin. 2. It was found in all cases that there is no difference in the effects of HCl, HBr, HNO3, acetic, mono-, di-, and trichloracetic, succinic, tartaric, citric, and phosphoric acids upon these physical properties when the solutions of the protein with these different acids have the same pH and the same concentration of originally isoelectric protein. 3. It was possible to show that in all the protein-acid salts named the anion in combination with the protein is monovalent. 4. The strong dibasic acid H2SO4 forms protein-acid salts with a divalent anion SO4 and the solutions of protein sulfate have an osmotic pressure and a viscosity of only half or less than that of a protein chloride solution of the same pH and the same concentration of originally isoelectric protein. Oxalic acid behaves essentially like a weak dibasic acid though it seems that a small part of the acid combines with the protein in the form of divalent anions. 5. It was found that the osmotic pressure and viscosity of solutions of Li, Na, K, and NH4 salts of a protein are the same at the same pH and the same concentration of originally isoelectric protein. 6. Ca(OH)2 and Ba(OH)2 form salts with proteins in which the cation is divalent and the osmotic pressure and viscosity of solutions of these two metal proteinates are only one-half or less than half of that of Na proteinate of the same pH and the same concentration of originally isoelectric gelatin. 7. These results exclude the possibility of expressing the effect of different acids and alkalies on the osmotic pressure of solutions of gelatin and egg albumin and on the viscosity of solutions of gelatin in the form of ion series. The different results of former workers were probably chiefly due to the fact that the effects of acids and alkalies on these proteins were compared for the same quantity of acid and alkali instead of for the same pH.  相似文献   

14.
The specificity of the alkaline proteinase from Aspergillus sojae was investigated. In the specificity studies with synthetic substrates, the enzyme hydrolyzed the peptide linkages involving the carboxyl group of leucine, tyrosine, phenylalanine, arginine and lysine. In the hydrolysis of natural proteins, the enzyme liberated relatively large peptides and traces of free amino acids, suggesting that the enzyme is of a typical endo-type.

N- and C-Terminal amino acid residues appearing during time course digestion of various proteins were determined. Considering the influence of amino acid composition of substrates on the frequencies of appearance of the terminal amino acids, it was estimated that the susceptibility of peptide bonds of substrate to the enzyme depends mainly on the carboxyl side residues, and, to far less extent, on the amino side residues of the peptide bonds. The enzyme showed relatively high specificity for lysine, tyrosine, histidine, arginine and phenylalanine residues at the carboxyl side of the susceptible linkages.  相似文献   

15.
By the use of two extreme models: a hydrated sphere and an unhydrated rod the valence (net charge) of corpuscular proteins can be successfully calculated from electric mobility data by the Debye-Hückel theory (modified to include the effect of the ions in the ion atmosphere) in conjunction with the electrophoretic theory of Henry. As pointed out by Abramson, this permits a comparison with values for the valence from titration data. Electrometric titration measurements of serum albumin B (Kekwick) have been determined at several ionic strengths. These results, together with the available data in the literature for serum albumin B, egg albumin, and β-lactoglobulin have been used to compare values for the valence calculated from measurements of titration, electrophoresis, and membrane potentials. The results indicate that the usual interpretation of titration curves is open to serious question. By extrapolation of the titration data to zero ionic strength and protein concentration, there results an "intrinsic" net charge curve describing the binding of H+ (OH-) ion alone. This curve agrees closely, in each case, with values of the valence calculated from mobility data (which in turn are in close accord with those estimated from membrane potential measurements). The experimental titration curves in the presence of appreciable quantities of ions and protein deviate widely from the ideal curve. It is suggested that, under these conditions, binding of undissociated acid (base) leads to erroneous values for the net charge. This binding would not affect the electrophoretic mobility. Values of the net charge obtained by the two extreme models from electrophoretic data are in agreement within 15 to 20 per cent. The agreement between the cylindrical model and the titration data is somewhat better in each case than with the sphere; i.e., this comparison enables a choice to be made between asymmetry and hydration in the interpretation of results from sedimentation and diffusion measurements on proteins. It is concluded that the proteins discussed here are somewhat asymmetric and also hydrated.  相似文献   

16.
The following facts have been established experimentally. 1. In the presence of the synthetic detergent, Duponol PC, there is a definite reaction between dilute ferricyanide and denatured egg albumin. 0.001 mM of ferrocyanide is formed by the oxidation of 10 mg. of denatured egg albumin despite considerable variation in the time, temperature, and pH of the reaction and in the concentration of ferricyanide. 2. If the concentration of ferricyanide is sufficiently high, then the reaction between ferricyanide and denatured egg albumin in Duponol solution is indefinite. More ferrocyanide is formed the longer the time of reaction, the higher the temperature, the more alkaline the solution, and the higher the concentration of ferricyanide. 3. Denatured egg albumin which has been treated with formaldehyde or iodoacetamide, both of which abolish the SH groups of cysteine, does not reduce dilute ferricyanide in Duponol PC solution. 4. Cysteine is the only amino acid which is known to have a definite reaction with ferricyanide or which is known to react with dilute ferricyanide at all. The cysteine-free proteins which have been tried do not reduce dilute ferricyanide in Duponol PC solution. 5. Concentrated ferricyanide oxidizes cystine, tyrosine, and tryptophane and proteins which contain these amino acids but not cysteine. The reactions are indefinite, more ferrocyanide being formed, the higher the temperature and the concentration of ferricyanide. 6. The amount of ferrocyanide formed from denatured egg albumin and a given amount of ferricyanide is less in the absence than in the presence of Duponol PC. 7. The amount of ferrocyanide formed when denatured egg albumin reacts with ferricyanide in the absence of Duponol PC depends on the temperature and ferricyanide concentration throughout the whole range of ferricyanide concentrations, even in the low range of ferricyanide concentrations in which ferricyanide does not react with amino adds other than cysteine. The foregoing results have led to the following conclusions which, however, have not been definitely proven. 1. The definite reaction between denatured egg albumin in Duponol PC solution and dilute ferricyanide is a reaction with SH groups whereas the indefinite reactions with concentrated ferricyanide involve other groups. 2. The SH groups of denatured egg albumin in the absence of Duponol PC react with iodoacetamide and concentrated ferricyanide but they do not all react rapidly with dilute ferricyanide. 3. Duponol PC lowers the ferricyanide concentration at which the SH groups of denatured egg albumin react with ferricyanide. The SH groups of denatured egg albumin, however, are free and accessible even in the absence of Duponol PC.  相似文献   

17.
Among the seven known isozymes of carbonic anhydrase in higher vertebrates, isozyme III is the least efficient in catalytic hydration of CO2 and the least susceptible to inhibition by sulfonamides. We have investigated the role of two basic residues near the active site of human carbonic anhydrase III (HCA III), lysine 64 and arginine 67, to determine whether they can account for some of the unique properties of this isozyme. Site-directed mutagenesis was used to replace these residues with histidine 64 and asparagine 67, the amino acids present at the corresponding positions of HCA II, the most efficient of the carbonic anhydrase isozymes. Catalysis by wild-type HCA III and mutants was determined from the initial velocity of hydration of CO2 at steady state by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and water at chemical equilibrium by mass spectrometry. We have shown that histidine 64 functions as a proton shuttle in carbonic anhydrase by substituting histidine for lysine 64 in HCA III. The enhanced CO2 hydration activity and pH profile of the resulting mutant support this role for histidine 64 in the catalytic mechanism and suggest an approach that may be useful in investigating the mechanistic roles of active-site residues in other isozyme groups. Replacing arginine 67 in HCA III by asparagine enhanced catalysis of CO2 hydration 3-fold compared with that of wild-type HCA III, and the pH profile of the resulting mutant was consistent with a proton transfer role for lysine 64. Neither replacement enhanced the weak inhibition of HCA III by acetazolamide or the catalytic hydrolysis of 4-nitrophenyl acetate.  相似文献   

18.
The rational designing of binding abilities in proteins requires an understanding of the relationship between structure and thermodynamics. However, our knowledge of the molecular origin of high‐affinity binding of ligands to proteins is still limited; such is the case for l ‐lysine–l ‐arginine–l ‐ornithine periplasmic binding protein (LAOBP), a periplasmic binding protein from Salmonella typhimurium that binds to l ‐arginine, l ‐lysine, and l ‐ornithine with nanomolar affinity and to l ‐histidine with micromolar affinity. Structural studies indicate that ligand binding induces a large conformational change in LAOBP. In this work, we studied the thermodynamics of l ‐histidine and l ‐arginine binding to LAOBP by isothermal titration calorimetry. For both ligands, the affinity is enthalpically driven, with a binding ΔCp of ~?300 cal mol?1 K?1, most of which arises from the burial of protein nonpolar surfaces that accompanies the conformational change. Osmotic stress measurements revealed that several water molecules become sequestered upon complex formation. In addition, LAOBP prefers positively charged ligands in their side chain. An energetic analysis shows that the protein acquires a thermodynamically equivalent state with both ligands. The 1000‐fold higher affinity of LAOBP for l ‐arginine as compared with l ‐histidine is mainly of enthalpic origin and can be ascribed to the formation of an extra pair of hydrogen bonds. Periplasmic binding proteins have evolved diverse energetic strategies for ligand recognition. STM4351, another arginine binding protein from Salmonella, shows an entropy‐driven micromolar affinity toward l ‐arginine. In contrast, our data show that LAOBP achieves nanomolar affinity for the same ligand through enthalpy optimization. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
1. In pure gelatin solutions the conductivity of the solution increases with increasing concentrations, regardless of the hydrogen ion concentration. The actual value of the specific conductivity is greater at that reaction where the degree of ionization is greater. 2. The addition of gelatin in increasing concentrations to a 0.6 per cent sodium chloride solution affects the conductivity of that solution in two ways: (a) At pH 3.3, (where gelatin is highly ionized) the conductivity increases with each added increment of gelatin. (b) At pH 5.1 and 7.4 (where gelatin is less highly ionized) the conductivity decreases with each added increment of gelatin. A similar study is being made of crystalline egg albumin.  相似文献   

20.
The specific rotation of egg albumin, gliadin, and gelatin (40°C.) is discussed in connection with available data on (a) mobility, (b) titration curve, and (c) osmotic pressure. It seems likely that the change in specific rotation with pH of protein solutions is proportional to the change in net charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号