首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究不同碳氮比对生物絮团形成及对日本沼虾(Macrobrachium nipponense)生长、抗氧化酶和消化酶的影响, 设置5个不同实验组[对照组(不做任何添加), 碳氮比10组(C/N10)、碳氮比15组(C/N15)、碳氮比20组(C/N20)和碳氮比25组(C/N25)], 每组设三重复; 将初始体重(0.25±0.03) g的日本沼虾置于不同碳氮比的玻璃缸(30 cm×40 cm×100 cm)中, 进行50d的饲养实验。研究结果表明, 随着碳氮比升高, 生物絮团含量有上升趋势, 生物絮团含量C/N20>C/N25>C/N15>C/N10, C/N20生物絮团最多, 生物絮团体积和总固体悬浮物分别为(328.67±7.09) mL/L和(40.33±1.53) mg/L而C/N10几乎没有生物絮团产生, C/N15和C/N25有少量生物絮团, 但含量显著低于C/N20。对照组的氨氮和亚硝酸氮浓度持续升高, C/N10和C/N25的氨氮和亚硝酸氮浓度有较大波动, 先升高后降低, 随后又有升高的趋势, 氨氮和亚硝酸氮浓度分别高于2和1.5 mg/L, C/N15和C/N20的氨氮和亚硝酸氮浓度在整个养殖期间都维持在较低水平, 氨氮和亚硝酸氮浓度分别低于0.35和0.6 mg/L, 且无剧烈波动。增重率依次是C/N20>C/N25>C/N15>C/N10>Control, C/N10、C/N15、C/N20和C/N25分别比对照组高出29.69%、50.22%、89.52%和75.98%(P<0.05); 特定生长率依次是C/N20>C/N25>C/N15>C/N10>Control, C/N10和C/N15、C/N20和C/N25分别比对照组高出18.41%、24.69%、42.26%和33.89%(P<0.05); 在抗氧化酶方面, 谷胱甘肽过氧化物酶(GPX)活性C/N20>C/N25>C/N15>C/N10>Control, 与对照组相比, C/N10、C/N15、C/N20和C/N25分别高出1.70%、21.42%、43.19%和31.49%(P<0.05); 超氧化物歧化酶(SOD)活性C/N20>C/N25>C/N15>C/N10>Control, 与对照组相比, C/N10、C/N15、C/N20和C/N25分别高了19.34%、35.26%、73.35%和47.12%。在消化酶方面, 淀粉酶活性依次是C/N20>C/N15>C/N25>Control>C/N10, 与对照组相比, C/N15、C/N20和C/N25分别高出68.09%、231.91%和42.55%(P<0.05); 脂肪酶活性依次是C/N20>C/N25>C/N15>Control>C/N10, 与对照组相比, C/N15、C/N20和C/N25分别高出2.86%、25.45%和23.12%(P<0.05); 胰蛋白酶活性依次是C/N20>C/N25>C/N15>C/N10>Control, 与对照组相比, C/N10、C/N15、C/N20和C/N25组分别高出12.98%、14.52%、36.45%和24.63%(P<0.05)。研究结果提示, 日本沼虾在生物絮团养殖模式下, 当碳氮比达到20时能有效产生生物絮团, 降低水体氨氮和亚硝酸氮浓度并显著提高日本沼虾的生长性能、肠道消化酶活性和肝胰腺抗氧化酶活性。  相似文献   

2.
In Vivo Methylation of an Arginine in Chicken Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: The amino acid sequence around the sole methylarginine residue in chicken myelin basic protein was determined and was found to be similar to that previously reported for mammalian myelin basic protein. The ratio N G, N 'G-dimethylarginine: N G-monomethylarginine:arginine was approximately 1.3:0.9:1.0. No N G, N G-dimethylarginine was detected in the protein. The in vivo incorporation of methyl groups from [methyl-3H]methionine into methylarginines in myelin was found to occur readily in 2-day-old chickens. Radioactively labelled N G, N 'G-dimeth-ylarginine and N G-monomethylarginine in myelin were derived solely from myelin basic protein. Radioactivity was also incorporated into N G, N G-dimeth-ylarginine, although this was not derived from myelin basic protein. As N G-monomethylarginine was easily separated from the dimethylarginines, and as it was derived from myelin basic protein, it may be a good marker for myelin basic protein turnover in vivo. A time course study of the incorporation showed that radioactivity was incorporated into N G-monomethylarginine up to 6 h after injection, and decayed slowly, with an apparent half-life of about 40 days.  相似文献   

3.
Escherichia coli pH 2.5 acid phosphatase gene (appA) and three mutants were expressed in Pichia pastoris to assess the effect of strategic mutations or deletion on the enzyme (EcAP) biochemical properties. Mutants A131N/ V134N/D207N/S211N, C200N/D207N/S211N, and A131N/ V134N/C200N/D207N/S211N had four, two, and four additional potential N-glycosylation sites, respectively. Extracellular phytase and acid phosphatase activities were produced by these mutants and the intact enzyme r-AppA. The N-glycosylation level was higher in mutants A131N/V134N/D207N/S211N (48%) and A131N/V134N/ C200N/D207N/S211N (89%) than that in r-AppA (14%). Despite no enhancement of glycosylation, mutant C200N/ D207N/S211N was different from r-AppA in the following properties. First, it was more active at pH 3.5-5.5. Second, it retained more (P < 0.01) phytase activity than that of r-AppA. Third, its specific activity of phytase was 54% higher. Lastly, its apparent catalytic efficiency kcat/Km for either p-nitrophenyl phosphate (5.8 x 10(5) vs 2.0 x 10(5) min(-1) M(-1)) or sodium phytate (6.9 x 10(6) vs 1.1 x 10(6) min(-1) M(-1)) was improved by factors of 1.9- and 5.3-fold, respectively. Based on the recently published E. coli phytase crystal structure, substitution of C200N in mutant C200N/D207N/S211N seems to eliminate the disulfide bond between the G helix and the GH loop in the alpha-domain of the protein. This change may modulate the domain flexibility and thereby the catalytic efficiency and thermostability of the enzyme.  相似文献   

4.
Catabolism of N-Acylethanolamine Phospholipids by Dog Brain Preparations   总被引:1,自引:1,他引:0  
Abstract: N -Acylphosphatidylethanolamine, incubated with dog brain homogenate or microsomes, was hydroyzed to phosphatidic acid and N -acylethanolamine by a phosphodiesterase of the phospholipase D type. In the absence of F, phosphatidic acid was further hydrolyzed to diacylglycerol and Pi while N -acylethanolamine was hydrolyzed by an amidase to fatty acid and ethanolamine. The phosphodiesterase showed an alkaline pH optimum and was also active towards N -acetylphosphatidyletha-nolamine, N -acyl-lysophosphatidylethanolamine, and glycerophospho( N -acyl)ethanolamine but showed little activity toward phosphatidylethanolamine and phosphati-dylcholine. Ca2+ stimulated slightly at low concentrations but inhibited at higher concentrations. Triton X-100 stim ulated the hydrolysis of N -acylphosphatidylethanol-amine, inhibited that of N -acyl-lysophosphatidyletha-nolamine and glycerophospho( N -acyl)ethanolamine, and had no effect on phosphatidylethanolamine or phospha-tidylcholine hydrolysis. The N -acylethanolamine hydrolase (amidase) was also present in the microsomal fraction and exhibited a pH optimum of 10.0. In addition to hydrolysis by the phosphodiesterase, N -acylphosphati-dylethanolamine was also catabolized by microsomal phospholipases A1 and/or A2 to N -acyl-lysophosphati-dylethanolamine, some of which was further hydrolyzed to glycerophospho( N -acyl)ethanolamine.  相似文献   

5.
We measured the incorporation of recycled urea-nitrogen (N) by ruminal microbes, using five ruminally and duodenally fistulated steers (237 kg) fed low-quality grass hay (47 g crude protein/kg dry matter (DM)). Three received 1 kg/day of soybean meal (SBM) and two received no supplemental protein (control). The experiment was 15 days long. Background enrichments of 15N were measured on day 9 and continuous jugular infusion of 0.12 g/day [15N15N]urea began on day 10. Daily samples of urine, feces, ruminal bacteria and duodenal digesta from days 10 through 14 were used to determine plateaus in 15N enrichment. Duodenal and bacterial samples collected on day 15 were used to measure duodenal N flows. Bacterial N flow was calculated as duodenal N flow multiplied by duodenal 15N enrichment divided by bacterial 15N enrichment. Bacterial N from recycled urea-N was calculated as bacterial N flow multiplied by bacterial 15N enrichment divided by urinary urea 15N enrichment. Urinary enrichment of [15N15N]urea plateaued within 24 h, whereas 14N15N urea plateaued within 48 h of [15N15N]urea infusion. Bacteria reached a plateau in 15N enrichment within 24 h and duodenal samples within 48 h. Urea production was 17.6 g of urea-N/day for control and 78.0 g/day for SBM. Gut entry was 0.99 g of urea-N/g of urea-N produced for control and 0.87 g/g for SBM. Incorporation of recycled N into microbial N was 9.0 g of N/day for control and 23.0 g/day for SBM. Recycled urea-N accounted for 0.33 g of N/g of microbial N at the duodenum for control and 0.27 g/g for SBM. Our methods allowed measurement of incorporation of recycled urea-N into ruminal microbial N.  相似文献   

6.
Acer pseudoplatanus L. trees were grown in sand culture for 2 years and, in 1988, supplied with either 1.0 mol N m-3 (low N) or 6.0 mol N m-3 (high N) to precondition their growth. In 1989, the same trees received either high or low nitrogen, producing four treatments; High N in 1988/High N in 1989; High N in 1988/Low N in 1989; Low N in 1988/Low N in 1989; and Low N in 1988/High N in 1989. Plant growth was affected by N supply in both years. In 1989 the Low N/High N treated trees had the same overall mass, leaf mass and stem girth as the High N/High N treatment. Early spring growth of foliage and roots was conditional on nitrogen supplied in the previous season. Later, the rapid increases in leaf, stem and root growth under high N was through root uptake. Internal partitioning of growth was affected, with the Low N/High N treatment producing more new leaves on axillary shoots, and more new white roots on existing structures, than the Low N/Low N treatment. Despite effects of the N preconditioning on the structure of both canopy and root system, nitrogen uptake was solely dependent on the current nitrogen supply.  相似文献   

7.
The root system of wheat seedlings ( Triticum aestivum L. SUN 9E) was pruned to two seminal roots. One of the roots was supplied with different levels of NO3, the other was deprived of N. Root respiration and the increment of C and N in roots and shoots were measured to determine the C/N ratio of the phloem sap feeding the N-deprived roots. Thus it was possible to determine translocation of N from the shoots to the roots. It was calculated that the C/N ratio of phloem sap feeding roots of plants growing at optimal and suboptimal N supply was ca 54. A supra-optimal N supply reduced, whilst shading increased, the C/N ratio of phloem sap. At optimal N supply 11% of all N transported to the shoots was retranslocated to the roots. Both a supra-optimal and a limiting N supply increased translocation of N back to the roots to 18% of the N translocated to the shoot, whilst shading of the plants decreased the proportion cycled to 7%. At the optimal N supply, 40% more N was translocated to the roots from the shoot than was incorporated by them. At a lower supply of N, 80% more N was imported from the shoots than was incorporated by these roots. It is suggested that the distribution of N between roots and shoots predominantly occurs in the shoots. The specific mass transfer rate in seminal roots was determined. The highest value was found for roots grown with an optimal N supply: 1.1 mg carbohydrate s−1 cm−2 (sieve tube) which is well within the range observed for other plant organs. Roots supplied with NO3 produced more and longer laterals than N-deprived roots. It is suggested that this is due to the effect of NO3 on import of carbon and other components transported in the mass flow with carbon.  相似文献   

8.
为减少土壤N2O排放,提高作物氮素利用,采用田间试验法研究了不同氮肥用量喷涂一定比例的吡啶(0、180、270、360 kg N·hm-2)对夏玉米生育期内土壤N2O排放和氮素表观损失、籽粒产量及氮素利用的影响.结果表明:不同氮肥用量下喷涂吡啶的土壤N2O排放主要集中在播种-苗期和拔节-抽雄期,基肥和追肥后均会出现显著的土壤N2O排放通量高峰.随氮肥用量增加,玉米产量不断增加,但270和360 kg N·hm-2间无显著差异,2种施氮量下的玉米分别净增收5209和5426元·hm-2.与不施氮肥比,各施氮处理下的玉米籽粒吸氮量提高幅度为109.6%~134.1%.各处理间的氮肥农学效率和氮肥利用率均以氮肥喷涂吡啶270 kg N·hm-2较大,而土壤氮素表观损失较小.氮肥喷涂吡啶在270 kg N·hm-2时玉米增产增收,氮肥利用效率较高,土壤N2O排放和氮素表观损失较少,是一种较为合理的氮肥调控施用技术.  相似文献   

9.
以青藏高原高寒草甸为研究对象, 通过人工氮肥添加试验, 研究6个群落优势种在不同施氮(N)水平下叶片碳(C)、N、磷(P)元素含量的变化以及生态化学计量学特征。结果表明: 自然条件下, 6个物种叶片N、P质量浓度存在显著的差异, 表现为: 黄花棘豆(Oxytropis ochrocephala)最高, 为24.5和2.51 g·kg-1, 其叶片N含量低于而P含量高于我国其他草地的豆科植物; 其余5个物种叶片N、P质量浓度分别为11.5-18.1和1.49-1.72 g·kg-1, 嵩草(Kobresia myosuroides)叶片N含量最低, 垂穗披碱草(Elymus nutans)叶片P含量最低, 与我国其他区域的研究结果相比, 其叶片N和P含量均低于我国其他草地非豆科植物。随氮素添加量的增大, 6种群落优势种叶片的C和P含量保持不变; 其他5种植物叶片N含量显著增加, 黄花棘豆叶片N含量保持不变。未添加氮肥时, 6种植物叶片N:P为7.3-11.2, 说明该区植物生长更多地受N限制。随N添加量的增加, 除黄花棘豆外, 其他5种植物叶片N:P大于16, 表现为植物生长受P限制。综合研究表明, 青藏草原高寒草甸植物叶片N含量较低, 植物受N影响显著, 但不同物种对N的添加反应不同, 豆科植物黄花棘豆叶片对N添加不敏感, 其他5个物种叶片全N含量随着N添加量的升高而增加, 该研究结果可为高寒草甸科学施肥提供理论依据。  相似文献   

10.
《植物生态学报》2014,38(3):231
以青藏高原高寒草甸为研究对象, 通过人工氮肥添加试验, 研究6个群落优势种在不同施氮(N)水平下叶片碳(C)、N、磷(P)元素含量的变化以及生态化学计量学特征。结果表明: 自然条件下, 6个物种叶片N、P质量浓度存在显著的差异, 表现为: 黄花棘豆(Oxytropis ochrocephala)最高, 为24.5和2.51 g·kg-1, 其叶片N含量低于而P含量高于我国其他草地的豆科植物; 其余5个物种叶片N、P质量浓度分别为11.5-18.1和1.49-1.72 g·kg-1, 嵩草(Kobresia myosuroides)叶片N含量最低, 垂穗披碱草(Elymus nutans)叶片P含量最低, 与我国其他区域的研究结果相比, 其叶片N和P含量均低于我国其他草地非豆科植物。随氮素添加量的增大, 6种群落优势种叶片的C和P含量保持不变; 其他5种植物叶片N含量显著增加, 黄花棘豆叶片N含量保持不变。未添加氮肥时, 6种植物叶片N:P为7.3-11.2, 说明该区植物生长更多地受N限制。随N添加量的增加, 除黄花棘豆外, 其他5种植物叶片N:P大于16, 表现为植物生长受P限制。综合研究表明, 青藏草原高寒草甸植物叶片N含量较低, 植物受N影响显著, 但不同物种对N的添加反应不同, 豆科植物黄花棘豆叶片对N添加不敏感, 其他5个物种叶片全N含量随着N添加量的升高而增加, 该研究结果可为高寒草甸科学施肥提供理论依据。  相似文献   

11.
为减少土壤N2O排放,提高作物氮素利用,采用田间试验法研究了不同氮肥用量喷涂一定比例的吡啶(0、180、270、360 kg N·hm-2)对夏玉米生育期内土壤N2O排放和氮素表观损失、籽粒产量及氮素利用的影响.结果表明:不同氮肥用量下喷涂吡啶的土壤N2O排放主要集中在播种-苗期和拔节-抽雄期,基肥和追肥后均会出现显著的土壤N2O排放通量高峰.随氮肥用量增加,玉米产量不断增加,但270和360 kg N·hm-2间无显著差异,2种施氮量下的玉米分别净增收5209和5426元·hm-2.与不施氮肥比,各施氮处理下的玉米籽粒吸氮量提高幅度为109.6%~134.1%.各处理间的氮肥农学效率和氮肥利用率均以氮肥喷涂吡啶270 kg N·hm-2较大,而土壤氮素表观损失较小.氮肥喷涂吡啶在270 kg N·hm-2时玉米增产增收,氮肥利用效率较高,土壤N2O排放和氮素表观损失较少,是一种较为合理的氮肥调控施用技术.  相似文献   

12.
不同无机氮源对东海原甲藻生长的影响   总被引:5,自引:0,他引:5  
在实验室条件下,研究了不同浓度、不同形态的氮(NaNO3、NH4Cl和NaNO2)对东海原甲藻(Prorocentrum donghaiense)生长的影响。结果表明:在NH4Cl浓度为5.20μmol·L-1(N/P为8)时藻的比生长率最高,而N/P为32和100时,藻的生长明显受到抑制。在NaNO3为氮源时,最适N/P为12(氮浓度为7.80μmol·L-1)。而NaNO2作氮源,N/P为16(10.40μmol·L-1)时藻的比生长率最高,N/P为32和100时藻的生长也明显受到抑制。研究显示,东海原甲藻对无机氮NH4Cl和NaNO3和NaNO2都可以利用,最适生长的N/P比范围在8~20之间,相对高的N/P(32、100)不利于东海原甲藻的生长。  相似文献   

13.
The nitrogen (N) balance in a double-cropped, effluent spray irrigation system was examined for several years in southern Australia. The amounts of N added by irrigation, removed in the crop, and lost by ammonia (NH3) volatilisation, denitrification, and leaching were measured. Results from the project provide pig producers with the knowledge necessary to evaluate the efficiency of such systems for managing N, and enable sustainable effluent reuse practices to be developed. Oats were grown through the winter (May to November) without irrigation, and irrigated maize was grown during the summer/autumn (December to April). Approximately 18 mm of effluent was applied every 3 days. The effluent was alkaline (pH 8.3) and the average ammoniacal-N (NH4+ + NH3) concentration was 430 mg N/l (range: 320 to 679 mg N/l). Mineral N in the 0- to 1.7-m layer tended to increase during the irrigation season and decrease during the winter/spring. About 2000 kg N/ha was found in the profile to a depth of 2 m in October 2000. N removed in the aboveground biomass (oats + maize) was 590 and 570 kg N/ha/year, equivalent to 25% of the applied N. Average NH3 volatilisation during the daytime (6:00 to 19:00) was 2.74 kg N/ha, while volatilisation at night (19:00 to 6:00) was 0.4 kg N/ha, giving a total of 3.1 kg N/ha/day. This represents approximately 12% of the N loading, assuming that these rates apply throughout the season. The balance of the N accumulated in the soil profile during the irrigation season, as 15N-labelled N studies confirmed. The high recovery of the 15N-labelled N, and the comparable distribution of 15N and Br in the soil profile, implied that there was little loss of N by denitrification, even though the soil was wet enough for leaching of both tracers.  相似文献   

14.
《植物生态学报》2016,40(11):1124
Aims Our purpose was to explore the effects of nitrogen addition on foliar nitrogen (N), phosphorus (P) and N:P stoichiometry and to assess their differences among different species and functional groups.
Methods N addition experiment has been conducted in a subtropical evergreen broad-leaved forest in Mount Wuyi, Fujian Province since 2011. Foliar concentrations of nitrogen and phosphorus were measured and foliar stoichiometry was estimated in tree, shrub, herb, fern and moss species following the N addition treatments from 2013 to 2015.
Important findings Generally, foliar N increased for almost all species and herbaceous plants are much more sensitive than trees and shrubs under N addition. Foliar N of Castanopsis carlesii, Amomum villosum, Woodwardia japonica increased significantly under N addition. Foliar P for most species was sensitive to the N addition. Foliar P of herbaceous plants increased significantly but foliar P of Leucobryum chlorophyllosum decreased significantly. The results showed the subtropical evergreen forest in Mount Wuyi was mainly limited by P and mean foliar N:P ratios enhanced from 18.67 to 19.72 under N addition, indicating that the strength of P limitation was enhanced by N addition. N:P ratios of the dominant arboreal species in the communities tended to be stable, while N:P ratios of herbaceous plants and shrubs increased. The changes in N:P ratios were mainly determined by P dynamics instead of N dynamics under N addition, and our results confirmed that increasing N availability can affect P cycling.  相似文献   

15.
The objective of this study was to investigate the relationship between nitrogen (N) partitioning and isotopic fractionation in lactating goats consuming diets with a constant high concentration of N and increasing levels of water soluble carbohydrate (WSC). Eight lactating goats were offered four different ratios of WSC : N in the diet. A two-period incomplete cross-over design was used, with two goats assigned to each treatment in each period. N balance measurements were conducted, with measurement of feed N intake and total output of N in milk, faeces and urine. Treatment, period and infusion effects were tested using general ANOVA; the relationships between variables were analysed by linear regression. Dietary treatment and period had significant effects on dry matter (DM) intake (g/day). DM digestibility (g/kg DM) and N digestibility (g/kg N) increased as the ratio of WSC : N increased in the diet. No treatment effect was observed on milk urea N concentration (g/l) or urinary excretion of purine derivatives (mM/day). Although dietary treatment and period had significant effects on N intake, the change of N intake was small; no effect was observed for N partitioning among faeces, milk and urine. Milk, plasma and faeces were enriched in 15N compared with feed, whilst urine was depleted in 15N relative to feed. No significant relationship was established between N partitioning and isotopic fractionation. This study failed to confirm the potential to use N isotopic fractionation as an indicator of N partitioning in dairy goats when diets provided N in excess to requirements, most likely because the range of milk N output/N intake and urinary N output/N intake were narrow.  相似文献   

16.
To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as 15NH4 14NO3 or 14NH4 15NO3 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N2 fixation supplied 38% of the N in Casuarina. Biomass, N and 15N contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as 15NH4+ than 15NO3-. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either 15N source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of 15N source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with 15NH4+ than with 15NO3-. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N2-fixing to an N2-fixing plant may reflect the very high N demand of N2-fixing species.  相似文献   

17.
该文以福建武夷山亚热带常绿阔叶林为研究对象, 通过设置3个氮(N)添加梯度的野外实验, 研究了群落内乔木植物、灌木植物、草本植物、蕨类植物和苔藓植物叶片N、磷(P)化学计量特征对N沉降的响应, 以及不同功能群和物种化学计量特征对N沉降响应的差异。在已开展5年人工N添加的样地内, 3年的监测结果表明: N添加整体上提高了植物叶片N含量, 草本层植物叶片N含量对N添加的响应比乔木层和灌木层植物更加敏感, 优势种米槠(Castanopsis carlesii)、草本植物砂仁(Amomum villosum)、蕨类植物狗脊(Woodwardia japonica)的叶片N含量显著增加。N添加整体上增加了植物叶片P含量, 乔木层植物和灌木层植物叶片P含量没有显著变化, 草本层植物叶片P含量显著增加, 而苔藓植物叶片P含量显著减少。N添加促使武夷山亚热带常绿阔叶林植物叶片N:P由18.67上升至19.72, 加剧了植物生长的P限制; 乔木物种N:P的变化较灌木和草本物种更加稳定。N添加条件下, 植物叶片N:P的变化主要受到叶片P含量而非N含量变化的影响, N添加对生态系统P循环的影响显著。  相似文献   

18.
以湘西南石漠化地区灌丛植物叶片为研究对象,分析了不同功能群植物以及3种不同石漠化程度(轻度、中度、重度)下植物叶片N、P化学计量特征.结果表明: 湘西南石漠化地区常见植物叶片平均N含量为12.89 g·kg-1,P含量为1.19 g·kg-1,N/P值为11.24,大部分植物生长受到N的限制.不同生活型之间植物叶片N含量为落叶灌木>常绿灌木>一年生草本>多年生草本,P含量与N/P值为落叶灌木>多年生草本.不同科植物之间叶片N、P含量和N/P值差异显著,禾本科植物叶片N、P含量最低,与其他科植物共同受N限制;豆科植物叶片N含量和N/P值最高,主要受P限制.双子叶植物与C3植物叶片N、P含量分别高于单子叶植物与C4植物,N/P值差异均不显著.固氮植物叶片N含量以及N/P值均高于非固氮植物,P含量差异不显著.各样地中植物叶片N、P含量之间的相关性显著,N/P值与N含量的相关性显著,仅与中度石漠化样地P含量差异显著.不同石漠化程度之间植物叶N、P含量以及N/P值差异不显著.  相似文献   

19.
为探明茯苓的碳、氮、磷生态化学计量学特征,采集了云南省11个州、市42个居群的茯苓样本,分析了其菌核与表皮中碳(C)、氮(N)、磷(P)的化学计量特征.结果 表明:茯苓菌核中C、N、P的含量分别为40.24%-43.58%、0.176%-0.532%和0.020%-0.077%;C∶N、C∶P和N∶P的范围分别为93....  相似文献   

20.
大气氮沉降增加深刻影响生态系统物种多样性、生产力及其稳定性,研究草原生态系统N库如何响应不断增加的大气氮沉降至关重要。本研究在内蒙古额尔古纳草甸草原开展刈割和不同水平外源氮添加试验,设置6个氮添加水平: 0、2、5、10、20和50 g·m-2·a-1,同时设置刈割处理,分为刈割和不刈割2个水平。在连续处理的第7年,采集群落中优势植物地上部分、群落根、地表凋落物和0~100 cm分层土壤样品,测定N含量并计算N库储量。结果表明: 氮添加显著增加植物地上部分和凋落物N含量,以及羊草、植物群落和凋落物的N库及生态系统N库总量。刈割处理显著增加羊草叶片和凋落物N含量,降低羊草、植物群落和凋落物N库,但并不改变它们对氮添加的响应格局。此外,刈割和氮添加对植物群落N库存在显著的交互作用。在不刈割处理下,高水平氮添加使更多的氮储存在凋落物中等待分解,植物群落N库的饱和阈值出现在10 g·m-2·a-1;在刈割处理下,植物群落N库表现为随氮添加量增加而不断增加,并且在相同水平氮添加条件下刈割后进入到植物群落N库中的氮更多。刈割可以缓解氮沉降不断增加对生物多样性和生态系统稳定性造成的不利影响,并可以在一定程度上推迟氮沉降增加引起的生态系统氮饱和的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号