首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loss of facilitated glucose transport of red cells occurring in the newborn pig was monitored in 11 density-separated cells from birth to a 4 wk of age. At birth there was a threefold increase in glucose permeability from the lightest cells to the most dense, suggesting that cells having progressively less glucose permeability are released into the circulation as gestation proceeds. Because of extraordinary stimulation of erythropoietic activity, the uppermost top fraction constituting 2-3 percent of the total cells is composed purely of reticulocytes in the growing animal. The glucose permeability of these reticulocytes which at birth has a slow but significant rate of 3.7 μmol/ml cell x min at 25 degrees C is rapidly decreased within 3-4 days to the level of reticulocytes produced in the adult in response to phenylhydrazine assault. Moreover, reticulocytes themselves discard their membrane permeability to glucose in the course of maturation to red cells. Thus, even though reticulocytes at birth are permeable to glucose, they will become red cells practically impervious to glucose within a few days. These findings suggest that the transition from a glucose- permeable fetal state to a glucose-impermeable postnatal state is brought about by two mechanisms: (a) dilution of fetal cells by glucose-impervious cells produced coincidentally with or shortly after birth; and (b) elimination of fetal cells, which have a shorter half-life, from the circulation.  相似文献   

2.
The glycolytic rate human red cells suspended in a sucrose medium of low or physiological pH was higher than that of the cells suspended in Ringer's medium of the same. pH. The medium pHP-glycolytic rate curve of red cells suspended in soucrose media shifted to the acidic side by about one unit compared with that of cells suspended in Ringer's medium. Similarly, the pattern of glycolytic intermediates in red cells suspended in a sucrose medium resembled that in cells suspended in Ringer's solution of about one unit higher pH. These phenomena could be ascribed to the change of intracellular pH, which was measured by the 5,5'-dimethyl-oxazolidine-2,4-dione method. A similar stimulation of glycolysis was observed when sodium citrate was added to red cells suspended in Ringer's solution at constant pH. These observations indicate that membrane-impermeable non-electrolytes or anions stimulate glycolysis of red cells by elevation ofthe intracellular pH. Red cell glycolysis is influenced mainly by the intracellular pH rather than by the pH of the suspending medium.  相似文献   

3.
Rabbit reticulocytes were separated into four fractions of different maturity in order to investigate the changes of cellular respiration and glycolysis, adenine nucleotides, 2,3-biphosphoglycerate (2,3-BPG) as well as cyclic AMP level during the transition from the youngest to the most mature reticulocytes. A significant reduction of total oxygen consumption, mainly due to depression of coupled respiration was found. The decline of respiration was accompanied by a 2-fold increase of the rate of aerobic glycolysis indicating a reduced Pasteur effect during maturation. A decline of ATP and an increase of ADP concentration was found. The oxygen-delivery capacity of the red cells increased by about 26% caused by an increase of the 2,3-BPG level of about 2 mmol/l cells. Cyclic AMP level in the fraction of youngest reticulocytes was about 60-fold higher than that in mature rabbit erythrocytes. The biggest decline of cyclic AMP was registered during the transition from youngest to the intermediate stage of maturity.  相似文献   

4.
Opossum erythrocytes filtered through cellulose columns were used to estimate their permeability to D-glucose and optimum inorganic phosphate requirement for D-glucose utilization at pH 7.4 and 8.1. D-Glucose readily penetrated opossum red cells; there was no measurable difference whether plasma or electrolyte solution served as the suspending medium. Optimum extracellular inorganic phosphate concentration for glucose utilization as indicated by red cell lactate production was pH-dependent, with a sharp optimum of 30 mmol/liter at pH 8.1. Whereas glucose, fructose, mannose, dihydroxyacetone, adenosine, and inosine were readily utilized at pH 7.4 and Pi 30 mmol/liter as shown by net lactate and ATP production by the red cells, galactose and ribose as substrates were not metabolized. In electrolyte, Pi 30 mmol/liter, and pH 7.4 glucose utilization by opossum red cells averaged 3.5 mumol, at pH 8.1, 9.5 mumol/ml cells/hr were utilized. Red cells suspended in leukocyte-free plasma utilized D-glucose at a rate of 3.0 mumol/ml/hr at pH 7.5. Seven percent of D-glucose flowed through the pentose phosphate pathway; this rate increased 11-fold by methylene blue stimulation. The amount of D-glucose recycled through the pentose phosphate pathway increased 300-fold in the presence of the redox dye.  相似文献   

5.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4 In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

6.
The metabolism of isolated rat kidney tubules suspended in calcium-free physiological saline buffered with phosphate was found to be sensitive to changes in the pH of the suspending medium. Lowering the pH from 7.8 to 6.4 brought about increases in the rates of oxidation of added succinate, glutamate or glutamine as well as in the production of glucose from lactate, glutamine, succinate and fructose. The cellular ATP level was also higher in tubules incubated at pH 6.4. In contrast, the utilization of added glucose was greater at pH 7.8 than at pH 6.4, a substantial amount of lactate being produced at the higher pH. When glucose and either lactate or glutamine were provided as co-substrates glucose was the preferred fuel at pH 7.8 but the alternative substrate was the more readily utilized at pH 6.4. As a consequence of the metabolic activities of the tubules the pH of the suspending medium changed, utilization of lactate, glutamate or glutamine causing a rise in pH while conversion of glucose to lactate caused a fall in pH. In cases where two substrates were metabolized concurrently over a period of 3 h the extracellular pH tended towards a plateau level of approximately pH 7.4. It is proposed that pH-sensitive metabolism in isolated kidney tubules contributes to pH homeostasis in the cellular environment.  相似文献   

7.
Rats were injected with 59Fe-ferrous citrate and bled thereafter at different times (16 h to 49 d). This gave rise to red cell populations in which cells corresponding in age to the time elapsed between injection and bleeding were labeled. The anticoagulant used was either acid-citrate-dextrose (ACD) with a pH adjusted to 7.3 or ACD (pH 5.1). Final pH of the collected blood was about 7.2-7.4 in the former case and 6.4-6.7 in the latter. Red cells were then centrifuged (5) and approximately 7-10% of the packed cells from the top and 7-10% from the bottom of the cell column collected. When reticulocytes are the predominant labeled red cell population, as in blood obtained for about 24 h after isotope injection, a fractionation of these cells and mature erythrocytes is in evidence only when blood is collected at the higher pH. Thus, at pH 7.2-7.4 ratios of specific radioactivities of cells in top fraction/cells in an unfractionated sample are about 3, whereas at pH 6.4-6.7, the analogous ratios are 1 or less. These differences in specific activity ratios, as a function of pH at collection, virtually disappear after about 4 d following isotope injection. The lower pH is known to increase the volume and decrease the density of mature red blood cells. The marked effect of pH on cellular fractionation could be correlated with the smaller change in rat reticulocyte density and volume in acid medium. At pH 6.4-6.7, the densities of mature erythrocytes and reticulocytes are so close that their physical separation by centrifugation is not feasible.  相似文献   

8.
The synthesis of membrane skeletal proteins in avian nucleated red cells has been the subject of extensive investigation, whereas little is known about skeletal protein synthesis in bone marrow erythroblasts and peripheral blood reticulocytes in mammals. To address this question, we have isolated nucleated red cell precursors and reticulocytes from spleens and from the peripheral blood, respectively, of rats with phenylhydrazine-induced hemolytic anemia and pulse-labeled them with [35S]methionine. Pulse-labeling of nucleated red cell precursors shows that the newly synthesized alpha- and beta-spectrins are present in the cytosol, with a severalfold excess of alpha-spectrin over beta-spectrin. However, in the membrane-skeletal fraction, newly synthesized alpha- and beta-spectrins are assembled in stoichiometric amounts, suggesting that the association of alpha-spectrin with the membrane skeleton may be rate-limited by the amount of beta-spectrin synthesized, as has been shown recently in avian erythroid cells (Blikstad, I., W. J. Nelson, R. T. Moon, and E. Lazarides, 1983. Cell, 32:1081-1091). Pulse-chase experiments in the rat nucleated red cell precursors show that the newly synthesized alpha- and beta-spectrin of the cytosol turn over coordinately and extremely rapidly. In contrast, in the membrane-skeletal fraction, the newly synthesized polypeptides of spectrin are stable. In contrast to nucleated erythroid cells, in reticulocytes the synthesis of alpha- and beta-spectrins is markedly diminished compared with the synthesis and assembly of proteins comigrating with bands 2.1 and 4.1 on SDS gels. Thus, in nucleated red cell precursors, the newly synthesized spectrin may be attached to the plasma membrane before proteins 2.1 and 4.1 are completely synthesized and incorporated in the membrane.  相似文献   

9.
Rats were injected with59Fe-ferrous citrate and bled thereafter at different times (16 h to 49 d). This gave rise to red cell populations in which cells corresponding in age to the time elapsed between injection and bleeding were labeled. The anticoagulant used was either acid-citrate-dextrose (ACD) with a pH adjusted to 7.3 or ACD (pH 5.1). Final pH of the collected blood was about 7.2–7.4 in the former case and 6.4–6.7 in the latter. Red cells were then centrifuged (5) and approximately 7–10% of the packed cells from the top and 7–10% from the bottom of the cell column collected. When reticulocytes are the predominant labeled red cell population, as in blood obtained for about 24 h after isotope injection, a fractionation of these cells and mature erythrocytes is in evidence only when blood is collected at the higher pH. Thus, at pH 7.2–7.4 ratios of specific radioactivities of cells in top fraction/cells in an unfractionated sample are about 3, whereas at pH 6.4–6.7, the analogous ratios are 1 or less. These differences in specific activity ratios, as a function of pH at collection, virtually disappear after about 4 d following isotope injection. The lower pH is known to increase the volume and decrease the density of mature red blood cells. The marked effect of pH on cellular fractionation could be correlated with the smaller change in rat reticulocyte density and volume in acid medium. At pH 6.4–6.7, the densities of mature erythrocytes and reticulocytes are so close that their physical separation by centrifugation is not feasible.  相似文献   

10.
The glucose-permeable fetal red cells in the pig are entirely replaced by glucose-impermeable adult red cells within a month after birth. This study investigates the kinetic parameters of the glucose transport mechanism in newborn pig red cells in comparison with immature adult red cells (reticulocytes) as well as the fully matured adult erythrocytes. Influx and efflux of the nonmetabolizable 3-O-methyl glucose (3-O-M-G) in red cells of newborn pigs saturate at high substrate concentrations and exhibit typical Michaelis-Menten kinetics. Km values for efflux are 15.2 and 18.2 mM for 15 and 22 degrees C, respectively. Q10 computed between 10 and 26 degrees is 5.0. The energy of activation for the transport process is 34,000 cal mol-1. The effectiveness of hexoses in competing with 3-O-M-G in efflux is in the following order: D-glucose greater than D-mannose greater than D-fructose greater than D-galactose. Efflux of 3-O-M-G does not increase with 3-O-M-G or D-ribose in the medium and is reduced by 2,4-dinitroflurobenzene (DNFB), p-chloromercuriphenyl sufonic acid (PCMBS), and phloridzin. The reticulocytes are shown to possess a carrier-mediated transport but with a considerably lower transport rate. As the reticulocytes mature into normal red cells, the carrier transport mechanism is lost.  相似文献   

11.
A method is described whereby short fragments of rat kidney tubule were obtained when kidney slices were gently dispersed by exposure to collagenase and hyaluronidase. When suspended in buffered saline the fragmented tubules respired actively over a period of several hours, the rate of oxygen consumption being proportional to the amount of cell protein. Oxygen uptake was stimulated by the addition of glucose, lactate, butyrate, alpha-oxoglutarate and other substrates and was decreased by the omission of Ca(2+) from the suspending medium. With alpha-oxoglutarate as the added substrate, dinitrophenol strongly stimulated oxygen uptake. Dinitrophenol had a less-marked stimulatory effect when glucose was the added substrate, and inhibited respiration in the absence of added substrate. Oligomycin inhibited respiration and this inhibition was partially reversed by dinitrophenol. Fragmented tubules synthesized glucose from lactate at a high rate but this capacity for gluconeogenesis was abolished by dinitrophenol and by physically damaging the cells.  相似文献   

12.
Since the sweet ketohexose L-sorbose causes overt hemolysis in dogs but not in man, we examined the possibility that L-sorbose induces a "prehemolytic state" of human red cells, manifesting itself as impairment of rheological red cell properties. After 2 hours incubation at 37 degrees C relative viscosity of red cell suspensions measured by radial spreading in filter paper and packing ability of red cells were normal. Incubation for 24 and 48 hours of red cells in media containing L-sorbose, glucose or no sugar showed that relative viscosity was best maintained in glucose. Relative viscosity and packing ability of red cells in L-sorbose containing suspensions decreased less than in suspensions without sugar. This difference was independent of the glucose metabolism, red cell ATP, osmolality and pH of the suspending media, but appeared to be related to different degrees of spheroechinocytic red cell shape transformation observed in different suspending media. It is possible that L-sorbose has some antiechinocytic properties and/or that it induces an alteration of red cell membrane flexibility. There is no indication of an L-sorbose induced "prehemolytic state" in human red cells.  相似文献   

13.
The tyrosinase (EC 1.14.18.1) activity of cultured B-16 mouse melanoma cells (C2M) in the stationary phase depends greatly on whether the culture medium contains glucose or galactose. The activity in medium containing galactose was about ten times that in medium containing glucose at pH 7.2. This difference in tyrosinase activity was concluded to be due to a shift of balance between synthesis and degradation of the enzyme. Experiments were conducted with stationary phase cultures in the presence of cycloheximide. The melanoma cells did not synthesize tyrosinase in medium containing glucose in the stationary phase. But when they were cultured under identical conditions, except that glucose was replaced by galactose, they continued to synthesize tyrosinase. The rate of synthesis in medium containing galactose at pH 6.3 was one third of that in the same medium at about pH 7, in which the increase in specific activity of tyrosinase per day was about 30 nmoles/mg cell protein per hr. The rate of degradation of the enzyme was practically the same in medium containing glucose as in medium containing galactose, and largely depended on the pH of the culture medium. At pH 6.3, the half-life was about one third of that at pH 7.2, where it was about 1.8 days. The degradation at acidic pH values was much reduced by ammonium salt and was strongly inhibited by the protease inhibitor, leupeptin.  相似文献   

14.
Effects of pH and egg water on the respiration of sea-urchin spermatozoa were polarographically studied in three sea-urchins and one starfish species. Sea-urchin sperm respiration is extremely sensitive to change in the pH of the suspending medium over a wide range. In normal-sea water, the pH of the sperm suspension decreased from 8.02 to 7.62, after four to five minutes' incubation at 18 degrees C. The Respiratory Dilution Effect could be recognized in the same medium. However, when sea water was buffered with HEPES at pH 8.2, the Effect was no longer observed. The diffusate from egg water (jelly coat solution) brought about a striking increase in the respiration when added to moderately respiring spermatozoa in HEPES-sea water of pH values lower than 7.9. No inccrease in the respiration was observed when the diffusate was added to vigorously respiring spermatozoa in HEPES-sea water of pH values higher than 8.2. Sperm motility was also inhibited by acid pH, and this inhibition was reversed by the addition of the diffusate. It does not seem that there is any species-specificity among three sea-urchins and one starfish used. The role of the diffusate is discussed in relation to the penetration of spermatozoa through the jelly coat to the egg surface.  相似文献   

15.
A method for the quantification of energy consuming processes described by Siems et al. for reticulocytes and by Müller et al. for ascites tumour cells was applied to balance the ATP-consumption of isolated rat hepatocytes. On the basis of decreased coupled respiration rates following the specific inhibition of energy-requiring reactions, the energy demands of protein turnover, nucleic acid synthesis, Na+/K(+)-ATPase and Ca2(+)-transport of hepatocytes in different incubation media were assessed. These processes together with urea synthesis account for about 60 per cent of the total energy consumption in a glucose and amino acid-enriched Eagle/Borsook medium. The metabolic flux rates of total ATP-consumption and ATP-consumption of single energy-requiring processes in hepatocytes are compared with those in reticulocytes and different tumour cell types.  相似文献   

16.
Responses of the blood content, breathing function and gaseous metabolism to changes of motional activity level in calves in the first 30 days of a postnatal period were investigated. Keeping of calves in conditions natural for mature animals at different motor activity levels as compared with the locomotion limitation leads to a lesser reduction of hemoglobin content, haematocrit ratio, red cells and reticulocytes count in blood of calves during first 30 days of life. In comparison with calves with additional motor activity, 10-day old calves with natural motor activity and locomotion limitation showed an increase of the protein level and reduction of glucose and cholesterol in the blood. Locomotion limitation of calves during the first 30 days of postnatal period caused reduction of the blood oxygen carrying capacity (erythrocytes and reticulocytes count) with simultaneous decrease of breathing function and gaseous metabolism efficiency (breathing output, minute ventilation, carbon dioxide output and oxygen uptake).  相似文献   

17.
Effect of additive solutions on platelet biochemistry.   总被引:3,自引:0,他引:3  
S Holme 《Blood cells》1992,18(3):421-30; discussion 431-4
Use of a synthetic medium for resuspension and storage of platelets has several advantages. In addition to the opportunity to save plasma, the use of a synthetic medium offers better possibilities for obtaining platelet products by automatic component processing in a more cost-effective and convenient manner. A synthetic medium also has the potential to avoid transfusion reactions caused by noncompatible plasma proteins and to improve platelet quality, which will lessen the number of units needed in transfusion. Platelets produce a substantial amount of lactic acid by metabolism of glucose. Thus, risk of pH fall is a major problem which platelet additive solutions must address. Two approaches have been used: (1) use of a glucose-free medium, and (2) use of a glucose-containing medium with a buffer system to neutralize the production of lactic acid. Using various synthetic media described in the literature, studies described in this paper suggest that some glucose is needed in the final suspending medium in order to obtain satisfactory maintenance of platelet quality during 5 days of storage. With the presence of acetate in the additive solution, platelet respiration is increased and glycolysis substantially decreased; therefore, with 10-20% of CPD-plasma carryover, sufficient glucose may be present in the final suspending medium to last for 5 days of storage. In addition, phosphate in the additive solution markedly enhances platelet glycolysis, and inhibitors of platelet activation reduce platelet metabolic activity and improve platelet viability and function.  相似文献   

18.
SYNOPSIS. In tryptone media, optimal growth of nonphotosynthetic Euglena gracilis var. bacillaris on glucose occurred with 1% (w/v) glucose at pH 3.5, and required a previous adaptive period in glucose medium. In short term metabolic experiments, glucose uptake was greatly stimulated by small concentrations of tryptone or succinate; effects of shaking suggested that CO2 has a similar stimulatory effect. Glucose utilization was highly dependent on glucose concentration, with an apparent threshold at about 2 mM and increasing steeply with glucose concentration above this value. In tracer experiments, about 90% of the glucose carbon consumed was assimilated, and about 10% released as CO2. Glucose did not stimulate respiration even during rapid glucose utilization. Tracer studies indicated oxidation of endogenous substrates was depressed by an amount which just compensated for the respiration due to glucose. The conditions which allowed rapid glucose utilization by “resting”E. gracilis var. bacillaris were the same as those known previously to be required for growth on glucose. It was therefore concluded that these factors act directly on the main pathways of glucose metabolism.  相似文献   

19.
Using the spleen cells of mice infected with the anemia-inducing strain of Friend leukemia virus, an in vitro model system of erythropoiesis has been developed in which a homogeneous population of murine proerythroblasts terminally differentiates in response to erythropoietin (EP). The biochemical events involved in EP's capacity to maintain viability, induce hemoglobin production, and promote the development of the specialized erythrocyte membrane were studied during the 48-72 hour period required for proerythroblasts to differentiate into reticulocytes. The results show that EP increases glucose uptake and the syntheses of RNA and protein in the first few hours after exposure of the erythroblasts to the hormone. A coordinated production of heme, alpha and beta globin occurs later and peaks at about 48 hours. This peak corresponds to the time at which the majority of cells are undergoing enucleation and becoming reticulocytes. The syntheses of the erythrocyte membrane and membrane skeletal proteins are not coordinated, and multiple patterns of synthesis are found with respect to the time of EP exposure. A number of proteins are lost from the membrane fraction while the characteristic proteins of the mature erythrocyte become prominent in the membrane fraction of erythroid cells as they develop from reticulocytes into erythrocytes.  相似文献   

20.
Reticulocytes, isolated by centrifugal elutriation from massively bled sheep and identified by cytometric techniques, were analyzed with respect to their cation transport properties. In sheep with genetically high K+ (HK) or low K+ (LK) red cells, two reticulocyte types were distinguished by conventional or fluorescence-staining techniques 5-6 days after hemorrhage: Large reticulocytes as part of a newly formed macrocytic (M) erythrocyte population, and small reticulocytes present among the adult red cell population (volume population III of normal sheep blood, Valet et al., 1978). Although cellular reticulin disappeared within a few days, the M-cell population persisted throughout weeks in the peripheral circulation permitting a transport study of in vivo maturation. At all times, M cells of LK sheep had lower K+ and higher Na+ contents than M cells of HK sheep. Regardless of the sheep genotypes, M cells apparently reduced their volume during their first days in circulation; however, throughout the observation period, they did not attain that characteristic for adult red cells. Both ouabain-sensitive K+ pump and ouabain-insensitive K+ leak fluxes were elevated in M cells of both HK and LK sheep. The increased K+ pump flux was mainly due to higher K+ pump turnover rather than to the modestly increased number of pumps as measured by [3H]ouabain binding. In contrast, small reticulocytes enriched from separated volume population III cells by a Percoll-density gradient exhibited transport parameters close to their prospective mature HK or LK red cells. The data support the concept that the M cells derived from emergency reticulocytes while the small reticulocytes represented precursors of normal red cell maturation. The Na+ and K+ composition found in M cells of HK and LK sheep, respectively, suggest development of the LK steady state at or prior to the reticulocyte state, a finding consistent with that of Lee and Kirk (1982) on low K+ dog red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号