首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Cyanide hemochromogen probably contains one cyanide group per heme group. 2. The equilibrium between pyridine hemochromogen and its components, pyridine and reduced heme, is complicated to an unknown extent by the precipitation of reduced heme and the aggregation of pyridine hemochromogen. 3. These complications were not taken into account in R. Hill''s experiments on pyridine hemochromogen. 4. Even if Hill''s experiments are sound they do not prove his conclusion that pyridine hemochromogen contains two pyridine groups per heme group.  相似文献   

2.
Cyanide can react with globin hemochromogen in two different ways. In the first reaction cyanide combines with globin hemochromogen without displacing or competing with globin. In the second reaction cyanide displaces globin.  相似文献   

3.
X-ray difference Fourier analysis at 2.8 Å resolution shows that the tertiary structures of horse cyanide methemoglobin and methemoglobin differ significantly. The conformations of the heme groups and their interactions with the globin are altered. Short contacts with globin side chains affect cyanide binding to the hemes, and the changes in globin-ligand contact upon substitution of cyanide for water in turn directly affect globin structure. Although the ligand peaks lie off the heme axes, the atoms FeCN may still lie on a straight line (as they do in small iron cyanide complexes), with this line not normal to the mean heme plane. This linear binding configuration is consistent with the observed motion and deformation of the porphyrin. Although motion of the iron atoms is not directly apparent, there is evidence that some changes in tertiary structure are induced by shortening of the iron-pyrrol nitrogen bond lengths. This and other studies suggest that the structural changes responsible for co-operativity in hemoglobin may be initiated not merely by an alteration in the covalent porphyrin-proximal histidine linkage, but by changes in the noncovalent interactions of the globin with the ligand and porphyrin as well.  相似文献   

4.
The synthesis of heme and globin in rabbit reticulocytes was compared at 35 and 25 degrees C. The lower temperature decreased heme synthesis significantly more than globin synthesis and resulted in a much greater accumulation of globin dimers. After 16 h of incubation in the absence of iron, globin synthesis in reticulocytes which were at 35 degrees C could not be stimulated by iron, whereas cells which were at 25 degrees C responded with nearly control levels of globin synthesis. Since the formation of the hemin-controlled translational repressor in reticulocyte lysates is also decreased much more than protein synthesis at reduced temperature the results provide evidence for a physiological role for the translational repressor in controlling globin synthesis in reticulocytes.  相似文献   

5.
Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used 1H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64–iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine–iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine–iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.  相似文献   

6.
Campylobacter jejuni hosts two hemoglobins (Hbs). The Camplylobacter jejuni single-domain Hb (called Cgb) is homologous to the globin domain of flavohemoglobin, and it has been proposed to protect the bacterium against nitrosative stress. The second Hb is called Ctb (hereafter Cj-trHbP), belongs to truncated Hb group III, and has been hypothesized to be involved in O(2) chemistry. Here, the kinetics and thermodynamics of cyanide binding to ferric and ferrous Cj-trHbP [Cj-trHbP(III) and Cj-trHbP(II), respectively] are reported and analyzed in parallel with those of related heme proteins, with particular reference to those from Mycobacterium tuberculosis. The affinity of cyanide for Cj-trHbP(II) is higher than that reported for any known (in)vertebrate globin by more than three orders of magnitude (K = 1.2 x 10(-6) m). This can be fully attributed to the highest (ever observed for a ferrous Hb) cyanide-binding association rate constant (k(on) = 3.3 x 10(3) m(-1).s(-1)), even though the binding process displays a rate-limiting step (k(max) = 9.1 s(-1)). Cj-trHbP(III) shows a very high affinity for cyanide (L = 5.8 x 10(-9) m); however, cyanide association kinetics are independent of cyanide concentration, displaying a rate-limiting step (l(max) = 2.0 x 10(-3) s(-1)). Values of the first-order rate constant for cyanide dissociation from Cj-trHbP(II)-cyanide and Cj-trHbP(III)-cyanide (k(off) =5.0 x 10(-3) s(-1) and l(off) > or = 1 x 10(-4) s(-1), respectively) are similar to those reported for (in)vertebrate globins. The very high affinity of cyanide for Cj-trHbP(II), reminiscent of that of horseradish peroxidase(II), suggests that this globin may participate in cyanide detoxification.  相似文献   

7.
The heme d1 prosthetic group isolated from Pseudomonas cytochrome oxidase combines with apomyoglobin to form a stable, optically well-defined complex. Addition of ferric heme d1 quenches apomyoglobin tryptophan fluorescence suggesting association in a 1:1 molar ratio. Optical absorption maxima for heme d1.apomyoglobin are at 629 and 429 nm before, and 632 and 458 nm after dithionite reduction; they are distinct from those of heme d1 in aqueous solution but more similar to those unobscured by heme c in Pseudomonas cytochrome oxidase. Cyanide, carbon monoxide and imidazole alter the spectrum of heme d1.apomyoglobin demonstrating axial coordination to heme d1 by exogeneous ligands. The cyanide-induced optical difference spectra exhibit isosbestic points, and a Scatchard-like analysis yields a linear plot with an apparent dissociation constant of 4.2 X 10(-5) M. However, carbon monoxide induces two absorption spectra with Soret maxima at 454 or 467 nm, and this duplicity, along with a shoulder that correlates with the latter before binding, suggests multiple carbon monoxide and possibly heme d1 orientations within the globin. The 50-fold reduction in cyanide affinity over myoglobin is more consistent with altered heme pocket interactions than the intrinsic electronic differences between the two hemes. However, stability of the heme d1.apomyoglobin complex is verified further by the inability to separate heme d1 from globin during dialysis and column chromatography in excess cyanide or imidazole. This stability, together with a comparison between spectra of ligand-free and -bound derivatives of heme d1-apomyoglobin and heme d1 in solution, implies that the prosthetic group is coordinated in the heme pocket through a protein-donated, strong-field ligand. Furthermore, the visible spectrum of heme d1.apomyoglobin varies minimally with ligand exchange, in contrast to the Soret, which suggests that much spectral information concerning heme d1 coordination in the oxidase is lost by interference from heme c absorption bands. A comparison of the absorption spectra of heme d1.apomyoglobin and Pseudomonas cytochrome oxidase, together with a critical examination of the previous axial ligand assignments from magnetic resonance techniques in the latter, implies that it is premature to accept the assignment of bishistidine heme d1 coordination in oxidized, ligand-free oxidase and other iron-isobacteriochlorin-containing enzymes.  相似文献   

8.
1. The processes of denaturation and coagulation of hemoglobin are like those of other proteins. 2. When hemoglobin is denatured it is probably depolymerized into hemochromogen. 3. When other proteins are denatured they, too, are probably depolymerized. Conversely, native proteins can be regarded as aggregates of denatured proteins. 4. The globins and histones are to be regarded as denatured proteins rather than as a distinct group of proteins. 5. The factors affecting the equilibrium between native and denatured proteins have been considered. 6. A non-polar group is uncovered when a protein is denatured. 7. It has been shown that judged by the two most sensitive tests for the specificity of proteins, it is only when proteins are in the native form that they are highly specific.  相似文献   

9.
Addition of 50 μm hemin to mouse erythroleukemia cells cultured in 0.5% dimethyl-sulfoxide (DMSO) resulted in >10-fold stimulation of globin chain synthesis as a percentage of acid precipitable protein. In cultures fully induced with 1.5% DMSO, addition of 15 mm 3-amino-1,2,4-triazole (AT), an inhibitor of heme synthesis, reduced globin chain synthesis to uninduced levels and reduced globin mRNA levels to less than 20% of induced values. The inhibition of AT was prevented by simultaneous addition of 25 μm hemin to the cultures. Using RNA-DNA hybridization analysis, the amount of globin mRNA sequences as a fraction of total cytoplasmic RNA was also increased by addition of 50 μm hemin to cultures with 0.5% DMSO. The results suggest that exogenous hemin can promote globin chain synthesis, that endogenously synthesized heme can be required for globin chain synthesis, and that hemin directly or indirectly also alters the appearance or degradation of globin mRNA sequences in the cytoplasm.  相似文献   

10.
We present a 1.59-A resolution crystal structure of reduced Paracoccus pantotrophus cytochrome cd(1) with cyanide bound to the d(1) heme and His/Met coordination of the c heme. Fe-C-N bond angles are 146 degrees for the A subunit and 164 degrees for the B subunit of the dimer. The nitrogen atom of bound cyanide is within hydrogen bonding distance of His(345) and His(388) and either a water molecule in subunit A or Tyr(25) in subunit B. The ferrous heme-cyanide complex is unusually stable (K(d) approximately 10(-6) m); we propose that this reflects both the design of the specialized d(1) heme ring and a general feature of anion reductases with active site heme. Oxidation of crystals of reduced, cyanide-bound, cytochrome cd(1) results in loss of cyanide and return to the native structure with Tyr(25) as a ligand to the d(1) heme iron and switching to His/His coordination at the c-type heme. No reason for unusually weak binding of cyanide to the ferric state can be identified; rather it is argued that the protein is designed such that a chelate-based effect drives displacement by tyrosine of cyanide or a weaker ligand, like reaction product nitric oxide, from the ferric d(1) heme.  相似文献   

11.
1. The globin prepared from hemoglobin by the acid acetone method is denatured globin. 2. The denaturation and coagulation of globin by acid acetone are reversible. 3. Soluble globin can be obtained from the acid acetone globin even if the globin is first precipitated by trichloracetic acid or heated to 100°C. 4. Hill and Holden''s theory that they separated native globin from hemoglobin without any intermediate denaturation is not proven by their experiments.  相似文献   

12.
13.
Purification and characterization of catalase-1 from Bacillus subtilis   总被引:3,自引:0,他引:3  
The catalase activity produced in vegetative Bacillus subtilis, catalase-1, has been purified to homogeneity. The apparent native molecular weight was determined to be 395,000. Only one subunit type with a molecular weight of 65,000 was present, suggesting a hexamer structure for the enzyme. In other respects, catalase-1 was a typical catalase. Protoheme IX was identified as the heme component on the basis of the spectra of the enzyme and of the isolated hemochromogen. The ratio of protoheme/subunit was 1. The enzyme remained active over a broad pH range of 5-11 and was only slowly inactivated at 65 degrees C. It was inhibited by cyanide, azide, and various sulfhydryl compounds. The apparent Km for hydrogen peroxide was 40.1 mM. The amino acid composition was typical of other catalases in having relatively low amounts of tryptophan and cysteine.  相似文献   

14.
Human apohemoglobin (globin) was spin-labeled at the beta-93 sulfhydryl groups with 2,2,5,5-tetramethyl-3-aminopyrrolidine-I-oxyl. Spin-labeled globin exhibited an EPR spectra that is less immobilized than that of spin-labeled hemoglobin, indicating the conformational difference in the vicinity of the label between hemoglobin and globin. Spectrophotometric titration of spin-labeled globin with protohemin showed that 1 mol of globin (on the tetramer basis) combines with 4 mol of hemin, producing a holomethemoglobin spectrophotometrically indistinguishable from native methemoglobin. The EPR spectrum was also changed strikingly upon the addition of protohemin. This change, however, was not proportional to the amount of hemin added, but marked changes occurred after 3 to 4 mol of hemin were mixed with 1 mol of spin-labeled globin. The EPR spectrum of spin-labeled hemoglobin thus prepared was identical with that prepared by direct spin labeling to methemoglobin. These results suggest the preferential binding of hemin to alpha-globin chains in the course of heme binding by globin. This assumption was further confirmed by preparing spin-labeled semihemoglobin in which only one kind of chain contained hemin (alpha h betaO SL and alpha O beta h SL). The EPR spectrum of the alpha h beta O SL molecule showed a slightly immobilized EPR spectrum, similar to that of spin-labeled globin mixed with 50% of the stoichiometric amount of hemin. On the other hand, the alpha O beta h SL molecule showed a distinctly different EPR signal from that of globin half-saturated with hemin, and showed an intermediate spectrum between those of beta h SL and alpha h beta h SL. These results indicate that heme binding to globin chains brings about a major conformational change in the protein moiety and that chain-chain association plays a secondary role. We conclude that hemin binds preferentially to alpha-globin chains and that the conformation of globin changes rapidly to that of methemoglobin after all four hemes are attached to globin heme pockets.  相似文献   

15.
Plasmodium lophurae hemozoin (malarial pigment) is composed of proteinaceous macromolecules bonded to iron III protoporphyrin IX by coordination bonding, van der Waals forces, and hydrophobic interactions but not by covalent bonding. Hemozoin is not composed of partially degraded globin peptides coordinated to heme, since fragments of molecular size less than that of globin monomers were not observed by SDS-PAGE. Two major polypeptides constituted the macromolecular portion of hemozoin; these had molecular weights of 21,000 and 15,000. The 21,000-molecular-weight protein is probably of parasite origin. The 15,000-molecular-weight polypeptide is believed to consist of globin monomers, and indicates the presence of irreversibly denatured hemoglobin (hemiglobin), as a constituent of hemozoin. The formation of hemozoin is hypothesized to play the following roles: protection of the parasite against molecular oxygen and compartmentation of the iron porphyrin which is a product of hemoglobin digestion by the plasmodium.  相似文献   

16.
The effects of a heme ligand, cyanide, on pure ovine prostaglandin H synthase have been examined in detail as one approach to elucidating the role of the heme cofactor in cyclooxygenase and peroxidase catalysis by the synthase. Cyanide bound to the synthase heme with an affinity (Kd) of 0.19 mM, and inhibited the peroxidase activity of the synthase, with a KI value of 0.23 mM. Cyanide increased the sensitivity of the cyclooxygenase to inhibition by the peroxide scavenger, glutathione peroxidase. This increased sensitivity to inhibition reflect and increase in the level of peroxide required to activate the cyclooxygenase, from 21 nM in absence of cyanide to over 300 nM when 2.5 mM cyanide was present. The increase in peroxide activator requirement with increasing cyanide concentration closely paralleled the formation of the holoenzyme-cyanide complex. These effects of low levels of cyanide suggest that the heme prosthetic group of the synthase participates in the efficient activation of the cyclooxygenase by peroxide. Cyanide blocked the stimulation of cyclooxygenase velocity by phenol, but not the phenol-induced increase in overall oxygen consumption. This blockade by cyanide was noncompetitive with respect to phenol and was characterized by a KI of 4 mM. The higher KI value for this effect suggests that cyanide can also interact at a site other than the heme prosthetic group. The role of the heme prosthetic group in promoting efficient activation of the cyclooxygenase by peroxide appears to be central to the ability of the synthase to amplify the ambient peroxide concentration rapidly.  相似文献   

17.
Nitric oxide derived from sodium nitroprusside binds to the heme moiety of hemoglobin and also modifies some functional groups in the protein. As hemoglobin concentration is increased, globin modification is decreased presumably due to formation of the NO complex with heme. The SH groups of hemoglobin are probably not involved in the formation of the stable product formed by NO. In the presence of inositol hexaphosphate, which binds preferentially in the cleft between the two beta-chains of hemoglobin, formation of one modified derivative was selectively reduced. With hemoglobin specifically blocked on its N-terminal residues, globin modification was also significantly reduced. Carbonic anhydrase, which is blocked at its N-terminus, was also refractory to modification. The results suggest that the N-terminal groups of some proteins can be modified by nitric oxide, perhaps by deamination.  相似文献   

18.
We studied the relationship between heme accumulation and globin synthesis in human erythroid precursors which were stimulated by 2 I.U. of erythropoietin in semi-solid cultures (1% methyl-cellulose, 20% fetal calf serum) and treated with 6-9 micrograms/ml of desferrioxamina (DF), a potent inhibitor of heme synthesis (6). Heme accumulation was detected by specific reaction with benzidine (4), globin synthesis by CM-cellulose column chromatography. Our results demonstrate that globin gene expression occurs in DF-treated erythroid cells which do not accumulate heme molecules. As heme does affect translation and stability of globin mRNA (10) our system might be suitable for studies focused on pathological alterations of erythropoiesis associated with the presence of unstable globin mRNAs and/or unstable globins.  相似文献   

19.
The heme environment and ligand binding properties of two relatively large membrane proteins containing multiple paramagnetic metal centers, cytochrome bo3 and bd quinol oxidases, have been studied by high field proton nuclear magnetic resonance (NMR) spectroscopy. The oxidized bo3 enzyme displays well-resolved hyperfine-shifted 1H NMR resonance assignable to the low-spin heme b center. The observed spectral changes induced by addition of cyanide to the protein were attributed to the structural perturbations on the low-spin heme (heme b) center by cyanide ligation to the nearby high-spin heme (heme o) of the protein. The oxidized hd oxidase shows extremely broad signals in the spectral region where protons near high-spin heme centers resonate. Addition of cyanide to the oxidized bd enzyme induced no detectable perturbations on the observed hyperfine signals, indicating the insensitive nature of this heme center toward cyanide. The proton signals near the low-spin heme b558 center are only observed in the presence of 20% formamide, consistent with a critical role of viscosity in detecting NMR signals of large membrane proteins. The reduced bd protein also displays hyperfine-shifted 1H NMR signals, indicating that the high-spin heme centers (hemes b595 and d) remain high-spin upon chemical reduction. The results presented here demonstrate that structural changes of one metal center can significantly influence the structural properties of other nearby metal center(s) in large membrane paramagnetic metalloproteins.  相似文献   

20.
The absorption spectra of alkaline pyridine hemochrome of myeloperoxidase in its native, acid, and modified forms were similar to those of heme a, and the molar extinction coefficient of myeloperoxidase heme was very similar to that of heme a, assuming that myeloperoxidase contains only one heme. The anaerobic titration of myeloperoxidase with dithionite showed that one electron was consumed per molecule of the enzyme for its conversion to its reduced form. The EPR spectrum of myeloperoxidase indicated that the enzyme contains both high-spin heme and non-heme iron. Carbonyl reagents, such as borohydride, hydrazine, and benzhydrazide, reacted with myeloperoxidase, causing blue shifts in its absorption spectrum. The heme was labeled with a tritium of boro[3H]hydride, suggesting that the reagents reacted with a formyl group on the porphyrin ring of the myeloperoxidase heme. When hydrazine was added to cyanide complex I of myeloperoxidase the complex was converted to the hydrazine-enzyme compound. Myeloperoxidase reacted with bisulfite to form a compound with an absorption spectrum similar to that of cyanide complex I. Borohydride-treated myeloperoxidase formed only one cyanide complex, while the native enzyme formed two different cyanide complexes, I (Kd = 0.3 muM) and II (approximate Kd = 0.1 mM). The EPR spectrum indicated that cyanide complex I of myeloperoxidase still contained high-spin heme. The results suggested that cyanide complex I and the bisulfite compound of myeloperoxidase were adducts between the nucleophilic reagents and the formyl group of myeloperoxidase heme. Based on these results, we concluded that one of the two iron atoms in a myeloperoxidase molecule exists in a formyl-heme moiety similar to heme a and the other exists as a non-heme iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号