首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical properties of spherical syncytia.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and also by large flows of current in either direction. This stage is temporary and the cells promptly recover from it. While it persists the polarization appears to be much greater to outward currents than to inward. This can largely be ascribed to the reduction of the reversed P.D. 5. Disappearance of P.D. caused by death, and various toxic agents. The resistance and polarization of the protoplasm are negligible. The back E.M.F. of polarization is shown to account largely for the apparent resistance of the protoplasm. Its calculation from the observed resistance rises gives values up to 150 mv. in the early stages of recovery, and later values of 50 to 75 mv. in the "constant" state. These are compared with the back E.M.F. similarly calculated from the apparent resistance of intact cells. The electrical capacitance of the protoplasm is shown by the time curves to be of the order of 1 microfarad per cm.2 of surface.  相似文献   

3.
The electrical properties of the membranes of Valoniautricularis were investigated using intracellular electrodes. Using short (0.5–1.0 ms) current pulses it was found that at a critical membrane potential difference of 0.85 V there was a large and discontinuous decrease in the membrane impedance and the slope resistance beyond this potential was virtually zero.The electrical breakdown of the membranes did not lead to global damage of the cells and after a resealing time of approx. 5 s could be repeated with identical results.Experiments with long current pulses and long bursts of pulses repeated at 1 kHz are described which show that the electrical breakdown is not due to thermal damage arising from localized heating in the membrane. Thus a dissipation of some 103–105 times the energy normally dissipated during the onset of breakdown did not lead to breakdown itself unless the critical membrane potential was exceeded.The results also show that punch-through and avalanche ionization are not likely to be important in the breakdown mechanism. The results are consitent, however, with there being a critical instability in the electro-mechanical stresses set up in the membrane at large electric field strengths.  相似文献   

4.
The bifunctional adenylate cyclase toxin (ACT or CyaA) of Bordetella pertussis invades target cells via transport through the cytoplasmic membrane. The membrane potential represents thereby an important factor for the uptake in vivo. Previous studies demonstrated that adenylate cyclase (AC) delivery into cells requires a negative membrane potential inside the cells. The results of lipid bilayer experiments with ACT presented here indicated that two different types of pore-like structures are formed by ACT dependent on the orientation of the electrical potential across the membranes. Pore formation at a positive potential at the cis side of the membranes, the side of the addition of the toxin, was fast and its conductance had a defined size, whereas at negative potential the pores were not defined, had a reduced pore-forming activity and a very short lifetime. Fluctuations inserted at positive potentials showed asymmetric current-voltage relationships for positive and negative voltages. Positive potentials at the cis side resulted in an increasing current, whereas at negative potentials the current decreased or remained at a constant level. Calcium ions enhanced the voltage dependence of the ACT pores when they were added to the cis side. The single-pore conductance was strongly affected by the variation of the pH value and increased in 1M KCl with increasing pH from about 4 pS at pH 5 to about 60 pS at pH 9. The ion selectivity remained unaffected by pH. Experiments with ACT mutants revealed, that the adenylate cyclase (AC) and repeat (RT) domains were not involved in voltage and pH sensing.  相似文献   

5.
String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F''S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.''S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout''s substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity.  相似文献   

6.
Using Stern's double-layer adsorption model for the density of cations in the membrane pores, a quantitative approach to the stationary current-voltage characteristic of nerve membranes is developed. The interaction of mobile cations with the negative fixed charges, located inside the membrane, constitutes a resistance for the current through the membrane. The stepwise increase in the resistance for the hyperpolarization is ascribed to a stronger interaction accompanying a depletion of the adsorbed cations from the interior. Thermodynamic treatment of flows and forces is adapted to the situation, to give a current voltage relation amenable to experimental check. The value of the resting potential thus obtained gives a deviation from Nernst equation applied to the ion for which the membrane is mainly permeable. The effect of the membrane double-layer potential on the potential range in which the transition from low to high resistance takes place, is explicitly incorporated. Finally, a comparison of the theory with the experimental results for the squid axon and frog nerve fibers is made.  相似文献   

7.
We previously described a model for the electrical transfer of excitation from one cell to the next which utilized the electric potential generated in the junctional cleft between the cells. Low-resistance connections between the cells were not used in the model, and it was assumed that the junctional membranes were excitable. This model was analyzed for the static case without capacitances and for the dynamic case in which capacitances were part of the circuit elements. For simplicity, the Na+ resistance (RNa), after a threshold potential was exceeded, was allowed to decrease exponentially (to 1% of its initial value) within 0·25–1·0 ms, and possible changes in the K+ resistance were ignored. In this paper, we have incorporated the Hodgkin-Huxley equations into the operation of the lumped membrane units for the electrical equivalent circuit of the cell membrane. The parameters varied are the membrane capacitances, resistances, maximum Na+ conductance (gNa), and the radial cleft resistance (Rjc). We demonstrated that our model worked very well, i.e. the successful transfer of action potentials was achieved, with the membrane units following Hodgkin-Huxley dynamics for changes in gNa and gK. The calculations indicate that transmission is facilitated when the junctional units have a higher gNa and a lower capacitance and when Rjc is elevated. Lowering the resistance of the junctional membrane units several fold, relative to the surface membrane units, also facilitated transmission; however, the absolute resistance of the junctional membrane was still well above the maximum value that would allow sufficient local-circuit current to flow to effect transmission. Thus, the electric field model provides an alternative means of cell-to-cell propagation between myocardial cells which is electrical in nature but does not require the presence of low-resistance connections between cells.  相似文献   

8.
Summary A model membrane composed of a filter paper and dioleylphosphate was studied by applying various kinds of external stimuli. When the concentration in the external solution was varied successively, the physico-chemical properties of the membrane changed drastically at a certain valueC t . The relationships between the electrical response and the external stimuli studied are as follows: (1) The membrane potential oscillates spontaneously in a spikelike fashion when the concentration of the external solution is suddenly changed. (2) The current through the membrane oscillates in spikelike fashion for a duration of about 50 msec when the constant external voltage, V larger than a certain value V c , is applied across the membrane. (3) The electric resistance sharply decreases, and a kind of action potential similar to that observed in living tissues is produced when a short rectangular electric stimulus, whose magnitude is higher than a critical value V p , is applied. (4) If a hydrostatic pressure difference across the membrane is applied with appropriate salt conditions, the value of the membrane potential varies with time, as in the case of (3). The observed changes in emf and electric resistance are discussed in connection with the conformational change of DOPH molecules in the membrane.  相似文献   

9.
Cyanobacterial/bacterial consortia are frequently inoculated to soils to increase the soil fertility and to accelerate the biodegradation of organic pollutants. Moreover, such consortia can also be successfully applied in landfills especially for the biodegradation of plastic wastes. However, the bioaugmentation techniques turn out frequently inefficient due to the competition of the indigenous microorganisms attacking directly these inoculated or secreting to their surroundings cell wall and membrane-lytic enzymes. It can be hypothesized that the resistance of the microbial membrane to the enzymatic degradation is correlated with its lipid composition. To verify this hypothesis glycolipid and phospholipid Langmuir monolayers were applied as models of thylakoid and plasma cyanobacterial and bacterial membranes. Hybrid fungal enzyme Lecitase ultra joining the activity of lipase and phospholipase A1 was applied as the model of fungal membrane-lytic enzyme. It turned out that anionic thylakoid lipids sulfoquinovosyldiacylglycerol and phosphatidylglycerols were the main targets of Lecitase ultra in the model multicomponent thylakoid membranes. The resistance of the model plasma bacterial membranes to enzymatic degradation depended significantly to their composition. The resistance increased generally when the unsaturated lipids were exchanged to their saturated counterparts. However, most resistant turned out the membranes composed of unsaturated phosphatidylamine and saturated anionic phospholipids.  相似文献   

10.
The light-induced electrical current generated by black lipid membranes containing bacteriorhodopsin from Halobacterium halobium has been measured directly. It is shown that a measurement of membrane potential can also be used to obtain the proton pump current developed during illumination. Evidence is presented that the charge movement across the membrane is associated with the release of protons in the photoreaction cycle of bacteriorhodopsin. The time variation of the pump current when the light is turned on suggests the rapid depopulation of some initially occupied state.  相似文献   

11.
1. Experiments were carried out to decide whether or not the electromotive properties of dried collodion membranes depend upon their thickness. 2. A number of dried collodion membranes of varying thickness, 3–160 µ, were prepared from collodion preparations of different electrochemical activity. The characteristic concentration potentials across them were measured and the means of these values determined for each thickness. 3. The characteristic concentration potentials across dried collodion membranes are a function of their thickness. The thinnest membranes yield in all cases the lowest concentration potentials; increasingly thicker membranes give increasingly higher potential values, until a constant value is reached which is characteristic of the particular collodion preparation used. With electrochemically active collodion, characteristic concentration potentials approaching the thermodynamically possible maximum are obtained with membranes of only 10 µ thickness, thinner membranes giving appreciably lower values. With two rather inactive commercial collodion preparations the characteristic concentration potential increases from about 30 mv. for membranes 3 µ thick to about 42 mv. for 20 µ membranes; still thicker membranes do not show a significant increase in the potential values. With a highly purified collodion preparation the constant maximum value was found to be about 32 mv., 4 µ thick membranes giving only about 22 mv. 4. These results do not support the homogeneous phase theory as applied to the dried collodion membrane. They are readily compatible with the micellar-structural theory. Several special possible cases of the latter as applied to the dried collodion membrane are discussed.  相似文献   

12.
Electrical Characteristics of Tunicate Heart Cell Membranes and Nexuses   总被引:3,自引:0,他引:3  
The tubular ascidian heart is composed of a single layer of cells joined together by apical (zonulae occludentes) and spot (maculae occludentes) nexuses. Intercalated discs or desmosomes were not observed in this tissue. Rectangular pulses of current were applied across the opened and flattened myocardium. Assuming that all the transepithelial current flowed through a uniform gap between cells, the resistivity in the gap must be very high compared to that in bulk solution. It is likely, therefore, that the gap width is of the order of an ionic radius or smaller. Assuming that all the transepithelial current flowed through the cells and that the inner and outer membranes had the same resistivity, the membrane resistivity was about 210 ohms cm2 and the membrane capacitance was about 1.6 µF per cm2. The myocardial cells were found to be in electrical continuity with each other through the nexuses since current could be passed through a strip of myocardium in a sucrose gap. Assuming that the longitudinal resistance of the cytoplasm was negligible, the cell-to-cell resistivity of the nexuses was 0.2 ohm cm2. It is concluded that the nexuses provide a low resistance pathway between cells and a transepithelial barrier.  相似文献   

13.
From somata of the pacemaker neurons in the Squilla heart ganglion, pacemaker potentials for the spontaneous periodic burst discharge are recorded with intracellular electrodes. The electrical activity is composed of slow potentials and superimposed spikes, and is divided into four types, which are: (a) "mammalian heart" type, (b) "slow generator" type, (c) "slow grower" type, and (d) "slow deficient" type. Since axons which are far from the somata do not produce slow potentials, the soma and dendrites must be where the slow potentials are generated. Hyperpolarization impedes generation of the slow potential, showing that it is an electrically excitable response. Membrane impedance increases on depolarization. Brief hyperpolarizing current can abolish the plateau but brief tetanic inhibitory fiber stimulation is more effective for the abolition. A single stimulus to the axon evokes the slow potential when the stimulus is applied some time after a previous burst. Repetitive stimuli to the axon are more effective in eliciting the slow potential, but the depolarization is not maintained on continuous stimulation. Synchronization of the slow potential among neurons is achieved by: (a) the electrotonic connections, with periodic change in resistance of the soma membrane, (b) active spread of the slow potential, and (c) synchronization through spikes.  相似文献   

14.
The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.  相似文献   

15.
The addition of nanomolar amounts of a toxin preparation derived from the sea anemone Stoichactis helianthus to black lipid membranes increases their electrical conductance by one million-fold. In addition, the membranes become permeable predominantly to monovalent cations. The elevated bilayer conductance is voltage-dependent, and the current-voltage curves of these bilayers display rectification as well as a region of negative resistance. The membrane activity of the toxin is proportional to the third power of its concentration, and at very low concentrations the membrane conductance increases in discrete uniform steps. These observations indicate that the mechanism of toxin action involves the formation of transmembrane channels constructed by the aggregation of protein molecules which are inserted in the bilayer. The voltage-dependent membrane conductance arises from two distinct channel characteristics: (1) the unit conductance of individual channels is dependent on the polarity of applied voltage; (2) the number of ion-conducting channels is influenced by the polarity as well as the magnitude of applied potential. It is believed that these effects are due to the influence of an electric field on the insertion of toxin molecules into the bilayer or on their subsequent association with each other to produce channels. Partial chemical characterization of the toxin material has shown that the membrane active factor is a basic protein with a molecular weight of 17 500.  相似文献   

16.
Chloride Transport in Porous Lipid Bilayer Membranes   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper describes dissipative Cl- transport in "porous" lipid bilayer membranes, i.e., cholesterol-containing membranes exposed to 1–3 x 10-7 M amphotericin B. PDCl (cm·s-1), the diffusional permeability coefficient for Cl-, estimated from unidirectional 36Cl- fluxes at zero volume flow, varied linearly with the membrane conductance (Gm, Ω-1·cm-2) when the contributions of unstirred layers to the resistance to tracer diffusion were relatively small with respect to the membranes; in 0.05 M NaCl, PDCl was 1.36 x 10-4 cm·s-1 when Gm was 0.02 Ω-1·cm-2. Net chloride fluxes were measured either in the presence of imposed concentration gradients or electrical potential differences. Under both sets of conditions: the values of PDCl computed from zero volume flow experiments described net chloride fluxes; the net chloride fluxes accounted for ~90–95% of the membrane current density; and, the chloride flux ratio conformed to the Ussing independence relationship. Thus, it is likely that Cl- traversed aqueous pores in these anion-permselective membranes via a simple diffusion process. The zero current membrane potentials measured when the aqueous phases contained asymmetrical NaCl solutions could be expressed in terms of the Goldman-Hodgkin-Katz constant field equation, assuming that the PDNa/PDCl ratio was 0.05. In symmetrical salt solutions, the current-voltage properties of these membranes were linear; in asymmetrical NaCl solutions, the membranes exhibited electrical rectification consistent with constant-field theory. It seems likely that the space charge density in these porous membranes is sufficiently low that the potential gradient within the membranes is approximately linear; and, that the pores are not electrically neutral, presumably because the Debye length within the membrane phase approximates the membrane thickness.  相似文献   

17.
It has been demonstrated that an externally applied electric field perturbs the distribution of some of the macromolecules in biological membranes. Various electrostatic, hydrodynamic and structural forces resulting from the external field influence the movement of intramembraneous particles. This study investigates one of those forces, that due to the polarization of the ion distribution near the cell surface.A model is proposed based on a continuous charge distribution and the electric field due to the polarization of the ion distribution is calculated at any point on the cell surface. Shortly after an external field (E0) is applied, parallel to the surface on which the cell is fixed, the field due to the ion distribution is ?AE0 sin ′, at a point (a, θ′, φ′) where qaE0 ? kT, a is the radius of the cell and q is the charge of an ion near the surface. From this model we found that for a 0·15 molar monovalent salt solution, A varies from 0·16 to 1·80 as the surface potential of the cell varies between 10 and 80 mV. For larger fields, qaE0kT the angular dependence is more complicated but the general conclusions are still valid. Results for other salt solutions and slightly different models are also given. The advantage of using discrete charges and the difficulties of incorporating them into the model are discussed.It is concluded that the force due to ion distribution polarization will have a significant effect on the movement of charged membrane components and it offers a possible explanation for the movement of charged intramembraneous molecules in a direction not expected when considering only the external field.  相似文献   

18.
1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.  相似文献   

19.
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin.This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR.NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.  相似文献   

20.
Vacuoles are dynamic compartments with constant fluctuations and transient structures such as trans-vacuolar strands and bulbs. Bulbs are highly dynamic spherical structures inside vacuoles that are formed by multiple layers of membranes and are continuous with the main tonoplast. We recently carried out a screen for mutants with abnormal trafficking to the vacuole or aberrant vacuole morphology. We characterized regulator of bulb biogenesis1-1 (rbb1-1), a mutant in Arabidopsis that contains increased numbers of bulbs when compared to the parental control. rbb1-1 mutants also contain fewer transvacuolar strands than the parental control, and we propose the hypothesis that the formation of transvacuolar strands and bulbs is functionally related. We propose that the bulbs may function transiently to accommodate membranes and proteins when transvacuolar strands fail to elongate. We show that RBB1 corresponds to a very large protein of unknown function that is specific to plants, is present in the cytosol, and may associate with cellular membranes. RBB1 is involved in the regulation of vacuole morphology and may be involved in the establishment or stability of trans-vacuolar strands and bulbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号