首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Many species of fishes have evolved mechanisms for coping with ammonia caused by either high ammonia environments or an inability to excrete nitrogenous wastes. Rainbow trout (Oncorhynchus mykiss), have not been known to have such a mechanism. The present study investigated whether rainbow trout can use amino acid synthesis and storage to cope with ammonia. Experiments were performed on fed and unfed rainbow trout under both control and elevated ammonia conditions (0 and 10 mgN/l (total ammonia nitrogen), pH 7.2). The results indicate that both feeding and ammonia exposure increased plasma ammonia significantly 6 h postprandial and post ammonia exposure. After 48 h the fed/ammonia exposed fish had plasma ammonia levels that were not significantly different than the fed/control fish. Plasma ammonia was reduced by more than 50%, attributable to ammonia being converted to glutamine in brain, liver and muscle tissue. Feeding alone also increased glutamine levels in brain tissue. Activity of glutamine synthetase in brain and liver was increased corresponding to an increase in glutamine concentrations when fish were exposed to ammonia. This is the first report showing that rainbow trout can detoxify endogenous and exogenous ammonia.  相似文献   

2.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

3.
The gut is classically seen as the main source of circulating ammonia. However, the contribution of the intestines to systemic ammonia production may be limited by hepatic extraction of portal-derived ammonia. Recent data suggest that the kidney may be more important than the gut for systemic ammonia production. The aim of this study was to quantify the role of the kidney, intestines, and liver in interorgan ammonia trafficking in humans with normal liver function. In addition, we studied changes in interorgan nitrogen metabolism caused by major hepatectomy. From 21 patients undergoing surgery, blood was sampled from the portal, hepatic, and renal veins to assess intestinal, hepatic, and renal ammonia metabolism. In seven cases, blood sampling was repeated after major hepatectomy. At steady state during surgery, intestinal ammonia release was equaled by hepatic ammonia uptake, precluding significant systemic release of intestinal-derived ammonia. In contrast, the kidneys released ammonia to the systemic circulation. Major hepatectomy led to increased concentrations of ammonia and amino acids in the systemic circulation. However, transsplanchnic concentration gradients after major hepatectomy were similar to baseline values, indicating the rapid institution of a new metabolic equilibrium. In conclusion, since hepatic ammonia uptake exactly equals intestinal ammonia release, the splanchnic area, and hence the gut, probably does not contribute significantly to systemic ammonia release. After major hepatectomy, hepatic ammonia clearance is well preserved, probably related to higher circulating ammonia concentrations.  相似文献   

4.
目的有效控制规模化蛋鸡生产过程中产生的大量氨气。方法通过富集、筛选和验证试验从土壤样本中筛选抑氨菌,通过纸片法将其对从鸡粪中富集到的产氨菌进行了拮抗试验,并进行抑氨菌的尿酸氮和氨氮的优先利用试验。结果成功获得了一株高效抑氨菌CA26,其在3d内对氨氮的去除率稳定在40%-60%,且对17株产氨菌有拮抗作用,在尿酸氮和氨氮同时存在时优先利用氨氮作为氮源。结论菌株CA26能高效抑制鸡粪氨挥发,其抑氨机制包括对产氨菌的拈抗作用和对氨氮的吸收利用。  相似文献   

5.
The kidney plays an important role in ammonia metabolism. In this study the hypothesis was tested that the kidney can acutely diminish ammonia release after portacaval shunting. Thirteen patients with cirrhosis (6 female/7 male, age 54.4 +/- 3.3 yr) were studied. Blood was sampled prior to and 1 h after transjugular intrahepatic stent-shunt (TIPSS) insertion from the portal vein, a hepatic vein, the right renal vein, and the femoral vein, and renal and liver plasma flow were measured. Prior to TIPSS, renal ammonia release was significantly higher than ammonia release from the splanchnic region, which was not significantly different from zero. TIPSS insertion did not change arterial ammonia concentration or ammonia release from the splanchnic region but reduced renal ammonia release into the circulation (P < 0.05) to values that were not different from zero. TIPSS resulted in a tendency toward increased venous-arterial ammonia concentration differences across leg muscle. Post-TIPSS ammonia efflux via portasystemic shunts was estimated to be seven times higher than renal efflux. Kidneys have the ability to acutely diminish systemic ammonia release after portacaval shunting. Diminished renal ammonia release and enhanced muscle ammonia uptake are important mechanisms by which the cirrhotic patient maintains ammonia homeostasis after portasystemic shunting.  相似文献   

6.
Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle metabolism of ammonia and amino acids in 14 patients with cirrhosis and in 7 healthy subjects by combining [(13)N]ammonia positron emission tomography (PET) of the thigh muscle with measurements of blood flow and arteriovenous (A-V) concentrations of ammonia and amino acids. PET was used to measure the metabolism of blood-supplied ammonia and the A-V measurements were used to measure the total ammonia metabolism across the thigh muscle. After intake of BCAA, blood ammonia increased more than 30% in both groups of subjects (both P < 0.05). Muscle clearance of blood-supplied ammonia (PET) was unaffected (P = 0.75), but the metabolic removal rate (PET) increased significantly because of increased blood ammonia in both groups (all P < 0.05). The total ammonia clearance across the leg muscle (A-V) increased by more than 50% in both groups, and the flux (A-V) of ammonia increased by more than 45% (all P < 0.05). BCAA intake led to a massive glutamine release from the muscle (cirrhotic patients, P < 0.05; healthy subjects, P = 0.12). In conclusion, BCAA enhanced the intrinsic muscle metabolism of ammonia but not the metabolism of blood-supplied ammonia in both the patients with cirrhosis and in the healthy subjects.  相似文献   

7.
The toxicity of ammonia to Eriocheir sinensis juveniles was determined. The 24 h-, 48 h-, 72 h-, 96 h-LC(50) values of total ammonia (TAN) were 251.68, 217.61, 156.05, and 119.67 mg L(-1), respectively. Following these results, crabs were then exposed for a 2-day period to 20, 40, 60 and 80 mg L(-1) TAN and sampled at 3, 6, 24 and 48 h for changes in metabolic parameters (including haemolymph ammonia concentration, glucose, lactate, urea, triacylglycerol, glutamine, and glutamate levels) and immunity indicators (the total of haemocyte count and superoxide dismutase activity). Results showed a distinct linear relationship between ambient ammonia and haemolymph ammonia and a notable increase in haemolymph ammonia content after ammonia exposure. Compared with the control group, lower concentration of triglycerides and significantly higher glucose, urea, and lactate level in haemolymph were observed when ambient ammonia increased. This suggested a reduced use of carbohydrates through anaerobic metabolism and an increase in the use of lipids to satisfy the metabolic demand. A significant surge of the ammonia metabolic product, glutamate, was observed after 3 h ammonia exposure, and the compensatory response to reduced glutamate was manifested by increased glutamine synthesis. During the same period, total haemocyte count decreased while ambient ammonia increased. Superoxide dismutase (SOD) activity in haemolymph was stimulated by lower ambient ammonia concentration after short time exposure and depressed by higher ammonia concentration. Therefore, haemolymph ammonia accumulation resulted in an increase in energy demand and a depression in immune capacity. The mechanism to detoxification of ammonia may be to transform ammonia to urea and glutamine.  相似文献   

8.
Information on the effects of elevated ammonia on invertebrates in general, and polar Mollusks in particular, is scant. Questions of ammonia sensitivity are interesting for several reasons, particularly since predicted global change scenarios include increasing anthropogenic nitrogen and toxic ammonia. Furthermore, polar zooplankton species are often lipid-rich, and authors have speculated that there is a linkage between elevated levels of lipids/trimethylamine oxide and enhanced ammonia tolerance. In the present study, we sought to examine ammonia tolerance and effects of elevated exogenous ammonia on several key aspects of the physiology and biochemistry of the pteropod mollusk, Clione limacina antarctica. We determined that the 96-h LC50 value for this species is 7.465?mM total ammonia (Upper 95% CL?=?8.498?mM and Lower 95% CL?=?6.557?mM) or 0.51?mg/L as unionized ammonia (NH3) (at a pH of 7.756). While comparative data for mollusks are limited, this value is at the lower end of reported values for other species. When the effects of lower ammonia concentrations (0.07?mM total ammonia) on oxygen consumption and ammonia excretion rates were examined, no effects were noted. However, total ammonia levels as low as 0.1?mM (or 0.007?mg/l NH3) elevated the activity of the ammonia detoxification enzyme glutamine synthetase by approximately 1.5-fold. The values for LC50 and observable effects on biochemistry for this one species are very close to permissible marine ammonia concentrations, indicating a need to more broadly determine the sensitivity of zooplankton to potential elevated ammonia levels in polar regions.  相似文献   

9.
This review will briefly summarize current knowledge on the basolateral ammonia transport mechanisms in the thick ascending limb (TAL) of the loop of Henle. This segment transports ammonia against a concentration gradient and is responsible for the accumulation of ammonia in the medullary interstitium, which, in turn, favors ammonia secretion across the collecting duct. Experimental data indicate that the sodium/hydrogen ion exchanger isoform 4 (NHE4; Scl9a4) is a sodium/ammonia exchanger and plays a major role in this process. Disruption of murine NHE4 leads to metabolic acidosis with inappropriate urinary ammonia excretion and decreases the ability of the TAL to absorb ammonia and to build the corticopapillary ammonia gradient. However, NHE4 does not account for the entirety of ammonia absorption by the TAL, indicating that, at least, one more transporter is involved.  相似文献   

10.
Energy metabolism and the production of ammonia in hybridoma cell culture and its inhibitory effects on cell growth are reviewed. The interactive roles of glucose and glutamine metabolism affect the rate of production of ammonia, and these interactions are described. It is shown that growth inhibition usually occurs between 2–4 mM ammonia although some cell lines have been shown to adapt to much higher concentrations, particularly in continuous culture. In batch cultures cell growth appears to be particularly susceptible to increased ammonia concentrations during the early stages of growth; ammonia increased the rate of cell death in the late stage of batch growth. The specific productivity of monoclonal antibodies is much less sensitive to the released ammonia than is growth; lower volumetric productivities relate to the lower viable cell concentrations which are achieved at the high ammonia levels. Techniques to prevent ammonia accumulation or remove ammonia selectively have been relatively unsuccessful to date.  相似文献   

11.
To confirm the transfer of ammonia leaking from the rumen content via the liver to the perid by laparotomy. When ammonia leakage from the hepatic vein occurred, it was followed by an increase in ammonia concentration in the jugular vein. There were increases of ammonia concentration in the intestinal vein and in the thoracic duct after urea drenching. These increases suggested neither trapping ammonia in the peritoneal fluid nor responsibility for increases of ammonia in the systemic circulation, respectively. At times when respiration ceased due to urea poisoning, the peritoneal fluids wee in the fluid. The hypothesis of the peritoneal cavity-thoracic duct route of ammonia absorption, presented by some of previous workers on urea toxicity, was not supported in the present study.  相似文献   

12.
Inclusion of ammonia in germinant mixtures containing L-alanine and inosine stimulated germination of unactivated Bacillus cereus spores at rates equal to those obtained using heat-activated spores without ammonia. D-Alanine had little effect on germination of heat-activated spores, but severely inhibited germination of unactivated spores in the presence of ammonia. Ammonia did not replace the requirement for either L-alanine or inosine: all three compounds were required for rapid germination. Kinetic analysis suggested that the functions of ammonia and L-alanine were more closely related than the functions of ammonia and inosine. With rate-saturating concentrations of L-alanine and inosine, germination rates showed saturation kinetics for ammonia with a Km for NH4Cl of 5 mM. Comparisons of the effects of salts, amines and pH on germination rates suggested that NH4OH rather than NH+4 was the rate-limiting form of ammonia. In comparisons of various strains of B. cereus, stimulation of germination by ammonia occurred in all cases, although spores of most soil isolates germinated more rapidly than B. cereus T spores in the absence of ammonia.  相似文献   

13.
14.
Abstract To quantitate ammonia production by the intestinal flora, ammonia levels in arterial blood and the venous effluent of the small and large bowel of conventional, selectively decontaminated, germ-free and gnotobiotic rats were measured.
When the anaerobic flora was removed by decontamination a significant decrease in ammonia levels was observed in the effluent of both the small and large intestine. Decontamination of aerobic flora did not result in depression of ammonia production. Gnotobiotic rats colonised with an anaerobic flora or with a mixed aerobic and anaerobic flora, showed a slight increase in ammonia levels. No increase in ammonia production was observed when rats were colonised with aerobic flora. These results indicate that the Enterobacteriaceae were not responsible for ammonia generation.
The increase in ammonia levels after colonisation with anaerobic or mixed anaerobic/aerobic flora did not completely restore ammonia levels, despite reaching bacterial counts which were comparable to those in conventional rats. This may be explained by the limited number of species with which the rats were colonized. The finding that aerobic flora does not significantly contribute to ammonia production suggests that neomycin, known to be exclusively effective against aerobic flora, must have other effects to explain improvement of hepatic encephalopathy.  相似文献   

15.
Model of ammonia volatilization from calcareous soils   总被引:2,自引:0,他引:2  
A quantitative model of ammonia volatilization from the calcareous soil uppermost 1-cm layer was developed and tested. The model accounts for the following processes: ammonium-ammonia equilibration in the soil solution, cation exchange between calcium and ammonium which results in ammonium distribution between soil liquid and solid phases, nitrification of dissolved ammonium, distribution of ammonia between liquid and gaseous phases and diffusion of gaseous ammonia in the soil air. The combined effect of various characteristics such as soil pH, cation exchange capacity, water capacity and nitrification rate on ammonia losses from various soil types have been studied. The model was validated against experimental results of ammonia losses from different soils for its use as a predicting tool. The model shows that most of ammonia losses can be explained by the interactive effect of high soil pH and low cation exchange capacity. Computations show increased ammonia volatilization with decreasing soil water capacity. Increasing fertilizer application rate has a small effect on percentage of ammonia losses. Increased nitrification rate and shorter “lag” period of nitrification reduce ammonia losses considerably. Good agreement was obtained between model calculations and experimental results of ammonia volatilization from 13 soils.  相似文献   

16.
The present study was conducted to extend the understanding of the combined physiological effects of different food rations in combination with sublethal levels of copper in common carp (Cyprinus carpio). Fish acclimated to low (0.5% body weight) and high (5% body weight) food rations were exposed to 1 microM copper for a period of 28 days and kept for a further 14 days in copper free water to examine their recovery. Measurements of oxygen consumption, ammonia excretion and ammonia accumulation in plasma and muscle were done at various time intervals during the experimental period. Overall, oxygen consumption and ammonia excretion rates were significantly affected by food ration in both copper free and copper exposed fish. Additional challenges, such as copper exposure and/or exercise, significantly increased plasma and muscle ammonia in the fish fed a high food ration. Muscle ammonia levels in general responded slower (first increase after 72 h) and recovered within 2 weeks of exposure. There was a significant correlation between plasma ammonia levels, muscle ammonia levels and ammonia excretion rates. Influence of copper in terms of ammonia excretion and plasma ammonia accumulation was observed in high ration fish but low ration fish remained unaffected. This clearly indicates that ammonia metabolism was significantly influenced by copper in this group of fish showing that during unfavourable environmental conditions a high amount of food supply may turn deleterious to fish.  相似文献   

17.
The proposal that plasma ammonia accumulation might impair the swimming performance of fish was first made over a decade ago, and has now proven to be the case for a number of salmonid species. The first experimental evidence was indirect, when a negative linear relationship between plasma ammonia concentrations and maximum sustainable swimming speed (U(crit)) was found following the exposure of brown trout (Salmo trutta) to sub-lethal concentrations of copper in soft acidic water. Since then, negative linear relationships between plasma ammonia concentration and U(crit) have been demonstrated following exposure of brown trout, rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) to elevated water ammonia. For brown trout, the relationships between plasma ammonia and U(crit) were remarkably similar following either exposure to elevated water ammonia or to sub-lethal copper. This indicates that the impairment of swimming performance resulting from exposure to sub-lethal concentrations of heavy metals may be attributable in large part to an accumulation of endogenous ammonia. The negative relationship between plasma ammonia concentration and U(crit) was similar in size-matched rainbow and brown trout but, under similar regimes of ammonia exposure, rainbow trout were able to maintain a significantly lower plasma ammonia concentration, revealing inter-specific differences in ammonia permeability and/or transport. One primary mechanism by which ammonia accumulation may impair exercise performance is a partial depolarisation of membrane potential in tissues such as the brain and white muscle. This may prejudice the co-ordination of swimming movements and reduce or abolish the development of muscle tension, thus, compromising swimming efficiency and performance at the top end of the range.  相似文献   

18.
在高密度养殖模式下,中华鳖经常暴露于高氨环境中。本研究评价了慢性氨暴露对中华鳖(Pelodiscussinensis)幼鳖生长及非特异性免疫功能的影响。将鳖(体重90.5±20.5g)饲养于非离子氨浓度分别为1.49mg/L(C1)、2.61mg/L(C2)和4.14mg/L(C3)的环境中84d,以不外加氨氮的自来水饲养组为对照(C0),实验期间各处理组均保持恒定的温度(29.5±0.5℃)和pH(7.8±0.1)值。氨暴露21、42和84d后测体重,氨暴露84d后取各实验组鳖的血样。在本实验设定浓度范围内,氨对中华鳖的生长及非特异性免疫指标如血清溶血活性、血清杀菌活性、血清溶菌活性和脾脏系数没有显著影响。但氨暴露组中华鳖血液和脾脏淋巴细胞α-乙酸萘酯酶(ANAE)阳性率与对照组相比均显著下降。研究结果表明中华鳖对高氨耐受能力比鱼类更强。  相似文献   

19.
An analysis of sources and sinks for ammonia and nitrite on the early Earth was conducted. Rates of formation and destruction, and steady state concentrations of both species were determined by steady state kinetics. The importance of the reaction of nitrite with ammonia on the feasibility of ammonia formation from nitrite was evaluated. The analysis considered conditions such as temperature, ferrous iron concentration, and pH. For sinks we considered the reduction of nitrite to ammonia, reaction between nitrite and ammonia, photochemical destruction of both species, and destruction at hydrothermal vents. Under most environmental conditions, the primary sink for nitrite is reduction to ammonia. The reaction between ammonia and nitrite is not an important sink for either nitrite or ammonia. Destruction at hydrothermal vents is important at acidic pH's and at low ferrous iron concentrations. Photochemical destruction, even in a worst case scenario, is unimportant under many conditions except possibly under acidic, low iron concentration, or low temperature conditions. The primary sink for ammonia is photochemical destruction in the atmosphere. Under acidic conditions, more of the ammonia is tied up as ammonium (reducing its vapor pressure and keeping it in solution) and hydrothermal destruction becomes more important.  相似文献   

20.
《FEBS letters》2014,588(9):1686-1691
We recently reported that hepatocyte mitochondrial aquaporin-8 (mtAQP8) channels facilitate the uptake of ammonia and its metabolism into urea. Here we studied the effect of bacterial lipopolysaccharides (LPS) on ammonia-derived ureagenesis. In LPS-treated rats, hepatic mtAQP8 protein expression and diffusional ammonia permeability (measured utilizing ammonia analogues) of liver inner mitochondrial membranes were downregulated. NMR studies using 15 N-labeled ammonia indicated that basal and glucagon-induced ureagenesis from ammonia were significantly reduced in hepatocytes from LPS-treated rats. Our data suggest that hepatocyte mtAQP8-mediated ammonia removal via ureagenesis is impaired by LPS, a mechanism potentially relevant to the molecular pathogenesis of defective hepatic ammonia detoxification in sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号