首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of NaCl upon the effect of MgCl2 upon oxalate buffer systems, interpreted by Simms as an instance of antagonism of Na+ and Mg++, has been shown to be capable of formulation as the effect of increasing ionic strength upon the dissociation of MgC2O4 into magnesium and oxalate ions.  相似文献   

2.
DNA-dependent RNA polymerase was solubilized from nuclei of ascites tumor cells by the standard techniques of ultrasonic treatment in 0.3 M ammonium sulfate, salt fractionation, and dialysis. Three discrete forms of RNA polymerase (I, II, III) were separated on DEAE-Sephadex A-25. Forms II and III were inhibited by α-amanitin, but no form was sensitive to rifampicin. Each form was more active with Mn++ than with Mg++ ions, more active with denatured than with native calf thymus DNA, and differed from the others with respect to optimal concentrations of (NH4)2SO4, Mn++ ions and DNA.  相似文献   

3.
Pediococcus soyae nov. sp., which has an inherited salt tolerant nature, is grown in solutions of high osmotic pressure. When this strain is transferred from 0.5% salted medium to a new medium containing 18% sodium chloride, the viable counts of this organism firstly decrease from about one half to one-third of the inoculated cells, and then normal growth occurs. This indicates the occurrence of physiological adaptation at an early stage of growth.

The growth of this lactic acid bacterium is observed in concentrated solutions of various inorganic salts. The solutions containing Na+, K+, Cl?, NO3? and SO4– – ions are not toxic for the organism, and the organism can grow in solutions of 133 atm. osmotic pressure, generally. However, Li+, Ca++, Mg++ and Br+ are, toxic for growth.

In concentrated sugar solutions, this organism also propagates well, and growth is observed in the media containing 50% glucose or 60% sucrose, osmotic pressure being 105 and 84 atm., respectively. Therefore, Pediococcus soyae nov. sp. is osmotolerant.  相似文献   

4.
Response of sugarcane to different types of salt stress   总被引:2,自引:0,他引:2  
Summary Due to climatic conditions and prevailing water regime the yield and sucrose recovery in sugarcane are high in South Western India. However, excessive irrigation, poor drainage and luxuriant use of fertilizers have resulted in conversion of large fertile areas into saline lands. The salinity is due to the excess of Na+, Ca++, Mg++, SO4 and Cl ions. Individual salts of NaCl, Na2SO4, MgCl2 and MgSO4 were employed in culture experiments to study salt stress effect on sugarcane variety Co 740. It was observed that sulphate salinity was more toxic to sugarcane than the chloride one. Sulphate salts caused more inhibition of growth, chlorophyll synthesis, PEPCase activity, decreased the uptake of K+ and Ca++ ions but stimulated nitrate reductase. The stress did not result in proline accumulation in the sugarcane cultivar Co 740. The degree of toxicity of different ions in decreasing order in sugarcane cultivar Co 740 is SO4 >Na+>Cl>Mg++.  相似文献   

5.
Magnesium ions decrease the activity of divalent organic anions much more than the normal decrease produced by sodium ions. The effect is very large with short chain acids, particularly oxalic acid. The addition of sodium or potassium ions produces a marked decrease in the effect of magnesium diions on the activity of oxalate diions. Quantitative data on 0.005 molar solutions of oxalic diion over a wide range of concentrations of MgCl2 and of NaCl (or KCl) show that the following equation is obeyed: See PDF for Equation where A is an empirical value dependent on the concentration of oxalate diion (0x=). This equation has been shown to hold down to zero ionic strength of Na+ and K+, and hence to be valid in the physiological range. These observations are of biological interest since the activity of proteins should (like oxalic acid) show a similar antagonism.  相似文献   

6.
Interaction of magnesium ions with poly A and poly U   总被引:2,自引:0,他引:2  
The binding of Mg++ to poly A and poly U has been measured quantitatively by using the metallochromic indicator calmagite. The method is described in detail. It is shown that there is electrostatic interaction between the binding sites, viz., the phosphate groups, and the intrinsic association constant, for the specific binding can be determined. After extrapolation to zero ionic strength we find that, for the binding of Mg++ to poly A, kint = 4 × 104 and for that, to poly U, kint = 3 × 104. The intrinsic enthalpy of association is negative. The effect of Mg++ on the secondary structure of poly A and poly U has been studied by measuring the ultraviolet absorbance, optical rotatory dispersion and viscosity as a function of the amount of added Mg++ ions. It was found that Mg++ promotes the formation of a more ordered secondary structure by neutralizing or screening the negative charges. It is concluded from the absorbance measurements that for poly A at pH ? 7 and for poly U at pH >xs 9 this ordering involves stacking of the bases. Likewise, in solutions of UDP with a pH around 10, base stacking occurs on addition of Mg++.  相似文献   

7.
The coupling of ion binding to the single strand helix—coil transition in poly (A) and poly(C) is used to obtain information about both processes by ion titration and field-jump relaxation methods. Characterisation of the field-jump relaxation in poly(C) at various concentrations of monovalent ions leads to the evaluation of a stability constant K = 71 M?1 for the ion binding to the polymer. The rate constant of helix formation is found to be 1.3 × 107 s?1, whereas the dissociation rate is 1.0 × 106 s?1. Similar data are presented for poly (A) and poly (dA).The interaction of Mg++ and Ca++ with poly (A) and poly (C) is measured by a titration method using the polymer absorbance for the indication of binding. The data can be represented by a model with independent binding “sites”. The stability constants increase with decreasing salt concentration from 2.7 × 104 M?1 at medium ionic strengths up to 2.7 × 107 M?1 at low ionic strength. The number of ions bound per nucleotide residue is in the range 0.2 to 0.3. Relaxation time constants associated with Mg++ binding are characterised over a broad range of Mg++ concentrations from 5 μM to 500 μM. The observed concentration dependence supports the conclusion on the number of binding places inferred from equilibrium titrations. The rate of Mg++ and Ca++ association to the polymer is close to the limit of diffusion control (kR = 1 × 1010 to 2 × 1010 M?1 s?1). This high rate demonstrates that Mg++ and Ca++ ions do not form inner-sphere complexes with the polynucleotides. Apparently the distance between two adjacent phosphates is too large for a simultaneous site binding of Mg++ or Ca++, and inner sphere complexation at a single phosphate seems to be too weak. The data support the view that the ions like Mg++ and Ca++ surround the polynucleotides in the form of a mobile ion cloud without site binding.  相似文献   

8.
The partition of sulfate, Ca++, and Mg++ across the membrane of the sartorius muscle has been studied, and the effect of various concentrations of these ions in the Ringer solution on the cellular level of Na+, K+, and Cl- has been determined. The level of the three divalent ions in toad plasma and muscle in vivo has been assayed. Muscle was found to contain an almost undetectable amount of inorganic sulfate. Increases in the external level of these ions brought about increases in intracellular content, calculated from the found extracellular space as determined with radioiodinated serum albumin or inulin. Less of the cell water is available to sulfate than to Cl-, and the Mg++ space is less than the Na+ space. An amount of muscle water similar to that found for Li+ and I- appears to be available to these divalent ions. Sulfate efflux from the cell was extremely rapid, and it was not found possible to differentiate kinetically between intra- and extracellular material. These results are consistent with the theory of a three phase system, assuming the muscle to consist of an extracellular phase and two intracellular phases. Mg++ and Ca++ are adsorbed onto the ordered phase, and increments in cellular content found on raising the external level are assumed to occur in the free intracellular phase.  相似文献   

9.
In Chaos chaos streaming, motility, and cytokinesis were inhibited nearly 100% for several hours by 2.5–5 mM sodium adenosine triphosphate (ATP)1 added to culture fluid. All three effects were completely prevented by the addition of equimolar Mg++ or Ca++ ions but not Na+ to the ATP/culture fluid solution. The effects of ATP were not reproduced by EDTA, EGTA, colchicine, or AMP. Sodium pyrophosphate produced about 50% inhibition at 5 mM. Studies with 14C-ATP showed that 5 x 10-5 to 5 x 10-4 mmole of ATP was firmly associated with each milliliter of packed cells after an hour''s incubation at 24°C. Labeling studies also showed that prevention of the ATP effects by Mg++ ions was not due to a decrease in the amount of ATP associated with the cells.  相似文献   

10.
Sedimentation coefficients and apparent molecular masses of 5.8S rRNA from rat liver and yeast (Saccharomyces cerevisiae) depend considerably on the ionic strength and the kind of ions in solution. At 20°C the sedimentation coefficient of 5.8S rRNA in 10 mm sodium cacodylate, pH 7.0, amounts to 5.1 ± 0.2 S. By addition of NaCl up to 1.1 m the data increase reversibly to 6.1 ± 0.2 S (rat liver) or 5.4 ± 0.1 S (yeast) without significant changes of the molar mass (52 000 ± 2000) g/mol. Similar effects but with different extent were obtained using KCl or LiCl. These results can be explained by counterion effects on the conformation and changing of the water shell surrounding the RNA molecule. Short heat incubation (5 min at 65°C) and immediate cooling of rat liver 5.8S rRNA lead to dimer or oligomer formation. Its portions depend strongly on RNA concentration and are enhanced also with increasing NaCl concentration and incubation temperature as can be seen fro higher sedimentation coefficients and molecular masses as well as from additional bands in the electrophoretic pattern. At 20°C MgCl2 provokes, in concentrations up to 1.5 mm, a reversible increase of sedimentation coefficients of rat liver 5.8S rRNA to 6.65 ± 0.1 S whereas the molecular mass remains unchanged indicating strong Mg++ effects on conformation and/or water shell of the 5.8S rRNA. A further increase of sedimentation coefficients up to 8.2 ± 0.1 S combined with higher apparent molar masses up to 90 000 g/mol was observed in the presence of 30 to 50 mm MgCl2. In this concentration range of Mg++ the association constants of 5.8S rRNA dimerization increase from about 105to 3 × 107m?1. After removal of free Mg++ by addition of EDTA the 5.8S rRNA dimers dissociate if no incubation step at higher temperature in involved. The Mg++ induced 5.8S rRNA dimers differ in their stability from those formed by incubation at 65°C in the presence of higher concentrations of monovalent ions.  相似文献   

11.
The carotid body and its own nerve were removed from cats anesthetized with sodium pentobarbital and placed in an air gap system; the carotid body was bathed in modified Locke's solution equilibrated with 50% O2 in N2, pH 7.43 at 35°C. The sensory discharges, changes in “resting” receptor polarization and the mass receptor potential evoked by ACh or NaCN were recorded with nonpolarizable electrodes placed across the gap. Receptor potentials and sensory discharges evoked by ACh showed an appreciable increase in amplitude and frequency when the preparation was bathed in eserinized Locke. Eserine did not change appreciably the responses evoked by NaCN. Excessive depolarization elicited by either ACh or NaCN was accompanied by sensory discharge block. Removal of K+ ions from the bathing solution induced receptor hyperpolarization and an increase in the amplitude of the evoked receptor potentials. An increase of K+ concentration had the opposite effect. Reduction of Na+ or NaCl to one half, or total removal of this salt, induced an initial reduction and later disappearance of the sensory discharges, some receptor hyperpolarization and a reduction in the amplitude of the evoked receptor potentials. Reduction or removal of Ca++ produced receptor depolarization, a marked depression of the evoked receptor potentials, an increase in the frequency of the sensory discharges and a reduction in the amplitude of the nerve action potentials. High Ca++ or Mg++ had little or no effect on action potential amplitude or resting polarization, but decreased sensory discharge frequency and the evoked receptor potentials. Total or partial replacement of Ca++ with Mg++ induced complex effects: (1) receptor depolarization which occurred in low Ca++, was prevented by addition of Mg++ ions; (2) the amplitude of the evoked receptor potentials was depressed; (3) the nerve discharge frequency was reduced as it was in high Mg++ solutions; and (4) the amplitude of the nerve action potentials was reduced as it was in low Ca++ solutions. Temperature had a marked effect on the chemoreceptors since a t high temperatures the receptors were depolarized and the discharge frequency increased. The baseline discharge and responses evoked by ACh or NaCN were depressed at low temperatures. The results are discussed in terms of possible receptor mechanisms influenced by the different ions.  相似文献   

12.
Reversible change of 50 S ribosomal subunits to 40 S particles takes place in cold buffered 0.5 M NH4Cl solutions either containing Mg++ (up to 0.1 M), or free from Mg++ and even supplemented with EDTA (1 mM). The 40 S particles were stable only within a definite temperature range. Heating of the samples caused completely irreversible unflding of the 40 S particles. This melting appeared to be co-operative and took place within a very narrow range of temperature, which for samples containing Mg++ was a linear function of the log of Mg++ concentration.The results suggest that two types of bonds maintained the compact structure of the ribosomal subunits: ionic bonds involving Mg++ and heat-labile weak interactions between ribosomal components.  相似文献   

13.
Electrical properties of the muscle fiber membrane were studied in the barnacle, Balanus nubilus Darw. by using intracellular electrode techniques. A depolarization of the membrane does not usually produce an all-or-none spike potential in the normal muscle fiber even though a mechanical response is elicited. The intracellular injection of Ca++-binding agents (K2SO4 and K salt of EDTA solution, K3 citrate solution, etc.) renders the fiber capable of initiating all-or-none spikes. The overshoot of such a spike potential increases with increasing external Ca concentration, the increment for a tenfold increase in Ca concentration being about 29 mv. The threshold membrane potential for the spike and also for the K conductance increase shifts to more positive membrane potentials with increasing [Ca++]out. The removal of Na ions from the external medium does not change the configuration of the spike potential. In the absence of Ca++ in the external medium, the spike potential is restored by Ba++ and Sr++ but not by Mg++. The overshoot of the spike potential increases with increasing [Ba++]out or [Sr++]out. The Ca influx through the membrane of the fiber treated with K2SO4 and EDTA was examined with Ca45. The influx was 14 pmol per sec. per cm2 for the resting membrane and 35 to 85 pmol per cm2 for one spike. From these results it is concluded that the spike potential of the barnacle muscle fiber results from the permeability increase of the membrane to Ca++ (Ba++ or Sr++).  相似文献   

14.
ATP sulfurylase from Penicillium chrysogenum was purified to homogeneity. The enzyme binds 8 mol of free ATP (Ks = 0.53 mM) or AMP (Ks = 0.50 mM) per 440,000 g. The results are consistent with our earlier report that the enzyme is composed of eight identical subunits of Mr 55,000 (J. W. Tweedie and I. H. Segel, 1971, Prep. Biochem. 1, 91–117; J. Biol. Chem. 246, 2438–2446). In the absence of cosubstrates, the purified enzyme catalyzes the hydrolysis of MgATP (to AMP and MgPPi) and adenosine 5′-phosphosulfate (APS) (to AMP and SO42?). MgATP hydrolysis is inhibited by nonreactive sulfate analogs such as nitrate, chlorate, and formate (uncompetitive with MgATP). In spite of the hydrolytic reactions it is possible to observe the binding of MgATP and APS to the enzyme in a qualitative (nonequilibrium) manner. Neither inorganic sulfate (the cosubstrate of the forward reaction) nor formate or inorganic phosphate (inhibitors competitive with sulfate) will bind to the free enzyme in detectable amounts in the absence or in the presence of Mg2+, Ca2+, free ATP, or a nonreactive analog of MgATP such as Mg-α,β-methylene-ATP. Similarly, inorganic pyrophosphate (the cosubstrate of the reverse reaction) will not bind in the absence or in the presence of Mg2+ or Ca2+. The induced binding of 32Pi (presumably to the sulfate site) can be observed in the presence of MgATP. The results are consistent with the obligately ordered binding sequence deduced from the steady-state kinetics (J. Farley et al., 1976, J. Biol. Chem. 251, 4389–4397) and suggest that the subsites for SO2?4 or MgPPi appear only after nucleotide cleavage to form E~AMP · MgPPi or E~AMP · SO4 complexes. The suggestion is supported by the relative values of Kia (ca. 1 mm for MgATP) and Kiq (ca. 1 αm for APS) and by the inconsistent value of k?1 calculated from VfKiaKmA (The value is considerably less than Vr) Purified ATP sulfurylase will also catalyze a Mg32PPi-MgATP exchange in the absence of SO42?. A 35SO42?-APS exchange could not be demonstrated in the absence or presence of MgPPi. This result was not unexpected: The rate of APS hydrolysis (or conversion to MgATP) is extremely rapid compared to the expected exchange rate. Also, the pool of APS at equilibrium is extremely small compared to the sulfate pool. The V values for molybdolysis, APS hydrolysis (in the absence of PPi), ATP synthesis (from APS + MgPPi), and Mg32PPi-MgATP exchange at saturating sulfate are all about equal (12–19 μmol × min?1 × mg of enzyme?1). The rates of Mg32PPi-MgATP exchange in the absence of sulfate, APS synthesis (from MgATP + sulfate), and MgATP hydrolysis (in the absence of sulfate) are considerably slower (0.10 – 0.35 μmol × min?1 × mg of enzyme?1). These results and the fact that k4 calculated from VrKiqKmQ is considerably larger than Vf suggest that the rate-limiting step in the overall forward reaction is the isomerization reaction E~AMP-SO2?4 → EAPS. In the reverse direction the rate-limiting step may be SO2?4 release or isomerization of the E~AMP · MgPPi · SO42? complex. (The reaction appears to be rapid equilibrium ordered.) Reactions involving the synthesis or cleavage of APS are specific for Mg2+. Reactions involving the synthesis or cleavage of ATP will proceed with Mg2+, with Mn2+, and, at a lower rate, with Co2+. The results suggest that the enzyme possesses a Mg2+-preferring divalent cation (activator) binding site that is involved in APS synthesis and cleavage and is distinct from the MeATP or MePPi site. The equilibrium binding of about one atom of 45Ca2+ per subunit (possibly to the activator site) could be demonstrated (Ks = 1.4 mM).  相似文献   

15.
Decreased K+ conductance produced by Ba++ in frog sartorius fibers   总被引:7,自引:6,他引:7  
The action of Ba++ on membrane potential (Em) and resistance (Rm) of frog (R. pipiens) sartorius fibers was studied. In normal Cl- Ringer''s, Ba++ (<9 mM) did not depolarize or induce contractions, but increased Rm slightly above the control value of 3.8 ± 0.6 KΩ-cm2. In Cl--free Ringer''s (methane sulfonate) Rm was 28.8 ± 2.8 KΩ-cm2, and low concentrations of Ba++ (0.05–5.0 mM) depolarized and induced spontaneous contractions (fibrillation), even in tetrodotoxin. To stop disturbance of the microelectrodes, contractions were prevented by using two Cl--free solutions: (a) twice hypertonic with sucrose (230 mM), or (b) high K+ (83 mM) partially replacing Na+. In the hypertonic solution, the fiber diameters decreased, Em increased slightly, and Rm decreased to 9.0 ± 0.6 KΩ-cm2 (perhaps due to swelling of sarcotubules). Ba++ (0.5 mM) rapidly increased Rm to 31.3 ± 3.8, decreased Em (e.g., to -30 mv), and induced spontaneous "action potentials;" Sr++ had no effect. In the high K+ solution, the fibers were nearly completely depolarized, and Rm was decreased markedly to 1.5 ± 0.2 KΩ-cm2; Ba++ increased Rm to 6.7 ± 0.5 KΩ-cm2. The Ba++ actions usually began within 0.5 min and reached a maximum within 5 min. Addition of SO4 =, to precipitate the Ba++, rapidly reversed the increase in Rm. Ba++ must act by decreasing K+ conductance (gK). In Cl- Ringer''s, the high gCl/gK ratio masked the effect of Ba++ on gK. Thus, small concentrations of Ba++ specifically and rapidly decrease gK.  相似文献   

16.
Rat liver mitochondria allowed to accumulate maximal amounts of Ca++ and HPO4= ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca++ and HPO4= from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca++-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca++-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca++-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca++ and phosphate from the mitochondria into the medium.  相似文献   

17.
1. The question of the critical pore diameter for streaming potential is discussed. 2. The surface charge is calculated for cellulose in contact with solutions of K3PO4, K2CO3, K2SO4, KCl, and ThCl4. 3. The surface charge of cellulose in contact with a solution of 2 x 10–4 N NaCl is calculated as a function of temperature and is found to show a sharp break at 39°. This is interpreted in terms of the change of the specific heat of water. 4. A marked ion antagonism is found in NaCl:KCl, KCl:MgCl2, NaCl:MgCl2, NaCl:CaCl2, KCl:CaCl2, CaCl2:MgCl2 mixtures when the surface charge is calculated as a function of concentration.  相似文献   

18.
The allosteric inhibition of homogeneous rabbit muscle fructosediphosphatase (D-fructose-1,6-diphosphate 1-phosphohydrolase, EC 3.1.3.11) by AMP decreases with increasing temperature. Partly inhibitory amounts of AMP give rise to a 3–4 fold increase of the apparent energy of activation. In the presence of Mg++ ions and AMP the apparent energy of activation is more than 50 kcal/mole and the corresponding temperature coefficient (Q10), between 30 and 40°C, is as high as 18. A discontinuous Arrhenius plot is observed in the presence of very small amounts of AMP. Some implications of these observations are discussed.  相似文献   

19.
A comparative study of the ionic properties of phosphatidylglycerol (PG) and lysylphosphatidylglycerol (LPG) has been carried out using monolayer and freeze-etch techniques. It is shown that the ionization state of the PG monolayer is strongly dependent on the subphase ionic strength. Mg++ and Ca++ induced a marked condensing effect. With Ca++ a typical cylindrical structure could be observed by freeze etching, this structure being assumed to be generated by Ca++ binding to PG. These phenomena were observed with both didodecanoyl-PG and PG from S. aureus. With respect to LPG it has been shown that the anion MoO4= gave a strong film condensation of didodecanoyl-LPG monolayers at pH 6 corresponding to a change in the bulk morphology from a transparent gel to a lamellar liposomal structure. A similar decrease in the molecular packing of S. aureus LPG was induced by MoO4=, without a change in the freeze etch morphology of the dispersion. Evidence is presented on the important role that the polar head groups of these charged phospholipids and their ionic environment have on the overall molecular packing. Differential scanning calorimetric measurements demonstrated that the liquid-crystalline to gel transition of didodecanoyl-PG is strongly dependent on the cations in the suspension. These phenomena may be relevant to the physical state of lipids in biological membranes.  相似文献   

20.
1. The combination of Cu++, Ca++, Mg++, Al+++, La+++, K+, Ag+, and Cl- with gelatin has been determined. 2. The equivalent combining value for copper is about 0.9 millimols per gm. of gelatin and is therefore the same as that of hydrogen. The value for copper with deaminized gelatin is about 0.4 to 0.5, again the same as that of hydrogen. The sum of the hydrogen and copper ions combined in the presence of an excess of either is 0.9 millimols showing that there is an equilibrium between the copper hydrogen and gelatin and that the copper and hydrogen are attached to the same group. 3. The equivalent combining value of La+++ and Al+++ is about 0.5 millimols per gm. of gelatin. This value is not significantly different with deaminized gelatin so that it is possible these salts combine only with groups not affected by deaminization. 4. No calcium is combined on the acid side of pH 3. The value rises rapidly from pH 3 to 4.7 and then remains constant. 5. No combination of K, Li, Na, NO3 or SO4 could be detected. 6. Cl combines less than the di- and trivalent metals so that the protein is positive in CaCl2 but negative in KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号