首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Several species of ascidians accumulate extremely high levels of vanadium ions in the vacuoles of their blood cells (vanadocytes). The vacuoles of vanadocytes also contain many protons and sulfate ions. To maintain the concentration of sulfate ions, an active transporter must exist in the blood cells, but no such transporter has been reported in vanadium-accumulating ascidians.

Methods

We determined the concentration of vanadium and sulfate ions in the blood cells (except for the giant cells) of Ascidia sydneiensis samea. We cloned cDNA for an Slc13-type sulfate transporter, AsSUL1, expressed in the vanadocytes of A. sydneiensis samea. The synthetic mRNA of AsSUL1 was introduced into Xenopus oocytes, and its ability to transport sulfate ions was analyzed.

Results

The concentrations of vanadium and sulfate ions in the blood cells (except for the giant cells) were 38 mM and 86 mM, respectively. The concentration of sulfate ions in the blood plasma was 25 mM. The transport activity of AsSUL1 was dependent on sodium ions, and its maximum velocity and apparent affinity were 2500 pmol/oocyte/h and 1.75 mM, respectively.

General significance

This could account for active uptake of sulfate ions from blood plasma where sulfate concentration is 25 mM, as determined in this study.  相似文献   

2.
On the basis of an examination of autoradiograms of knee-joints fixed so as to remove chondroitin sulfate or inorganic sulfate, or to minimize the loss of both, it is suggested that the cartilage is permeable to inorganic sulfate in vivo and in vitro. In vivo and in vitro, almost as rapidly as it enters the cartilage, inorganic sulfate is utilized by the cells in the synthesis of chondroitin sulfate. The net result is a continuing low concentration of inorganic sulfate in the cartilage.  相似文献   

3.
Kinetics of Sulfate and Acetate Uptake by Desulfobacter postgatei   总被引:8,自引:4,他引:4       下载免费PDF全文
The kinetics of sulfate and acetate uptake was studied in the sulfate-reducing bacterium Desulfobacter postgatei (DSM 2034). Kinetic parameters (Km and Vmax) were estimated from substrate consumption curves by resting cell suspensions with [35S]sulfate and [14C]acetate. Both sulfate and acetate consumption followed Michaelis-Menten saturation kinetics. The half-saturation constant (Km) for acetate uptake was 70 μM with cells from either long-term sulfate- or long-term acetate-limited chemostat cultures. The average Km value for sulfate uptake by D. postgatei was about 200 μM. Km values for sulfate uptake did not differ significantly when determined with cells derived either from batch cultures or sulfate- or acetate-limited chemostat cultures. Acetate consumption was observed at acetate concentrations of ≤1 μM, whereas sulfate uptake usually ceased at 5 to 20 μM. The results show that D. postgatei is not freely permeable to sulfate ions and further indicate that sulfate uptake is an energy-requiring process.  相似文献   

4.
The treatment of chondroitin sulfate isolated from cultured B16 mouse melanoma cells with 0.04 M HCl at 100°C for 90 min released up to 45% of O-sulfate residues as free inorganic sulfate. In addition to the release of inorganic sulfate, extensive degradation of this polysaccharide as well as of cartilage chondroitin sulfate, pig rib cartilage proteoglycan, heparin and hyaluronic acid was also evident under these conditions. The above hydrolysis conditions are used for characterizing 35S-labeled heparan sulfates synthesized by cultured cells and to calculate ratio of N- and O-sulfates in these molecules. Our results suggest that caution in necessary in interpreting the results of mild acid hydrolysis of glycosaminoglycans.  相似文献   

5.
The glycosaminoglycan composition of AH-130 ascites hepatoma cells and fluid were examined using enzymatic digestion, electrophoresis, and sequential partition fractionation. The cell-associated glycosaminoglycans were found to consist of 93% heparan sulfate, with the remainder consisting primarily of chondroitin sulfate. The glycosaminoglycans isolated from the ascitic fluid were found to consist of 58% heparan sulfate, 26% hyaluronic acid and 16% chondroitin sulfate. Dermatan sulfate was not detected in either cells or fluid. The heparan sulfate isolated from AH-130 cells is low-sulfate and highly heterogeneous with respect to biochemical composition. Fractions isolated by partition fractionation varied from 0.14 mol sulfate/mol uronic acid to 0.6 mol sulfate/mol uronic acid. Of the total sulfate 70–80% is N-sulfate in the former and 50% in the latter. Electrophoresis in 0.1 M HCl showed a highly heterogeneous material with mobility between that of hyaluronic acid and beef lung heparan sulfate. The heparan sulfate isolated from the fluid was similar to that isolated from the cells but was, however, somewhat more homogeneous with respect to charge.  相似文献   

6.

Background

Sulfate uptake was analyzed in photosynthetic Euglena gracilis grown in sulfate sufficient or sulfate deficient media, or under Cd2+ exposure or Cys overload, to determine its regulatory mechanisms and contribution to Cys homeostasis.

Results

In control and sulfate deficient or Cd2+-stressed cells, one high affinity and two low affinity sulfate transporters were revealed, which were partially inhibited by photophosphorylation and oxidative phosphorylation inhibitors and ionophores, as well as by chromate and molybdate; H+ efflux also diminished in presence of sulfate. In both sulfate deficient and Cd2+-exposed cells, the activity of the sulfate transporters was significantly increased. However, the content of thiol-metabolites was lower in sulfate-deficient cells, and higher in Cd2+-exposed cells, in comparison to control cells. In cells incubated with external Cys, sulfate uptake was strongly inhibited correlating with 5-times increased intracellular Cys. Re-supply of sulfate to sulfate deficient cells increased the Cys, γ-glutamylcysteine and GSH pools, and to Cys-overloaded cells resulted in the consumption of previously accumulated Cys. In contrast, in Cd2+ exposed cells none of the already elevated thiol-metabolites changed.

Conclusions

(i) Sulfate transport is an energy-dependent process; (ii) sulfate transporters are over-expressed under sulfate deficiency or Cd2+ stress and their activity can be inhibited by high internal Cys; and (iii) sulfate uptake exerts homeostatic control of the Cys pool.  相似文献   

7.
The Escherichia coli inner membrane protein CysZ mediates the sulfate uptake subsequently utilized for the synthesis of sulfur-containing compounds in cells. Here we report the purification and functional characterization of CysZ. Using Isothermal Titration Calorimetry, we have observed interactions between CysZ and its putative substrate sulfate. Additional sulfur-containing compounds from the cysteine synthesis pathway have also been analyzed for their abilities to interact with CysZ. Our results suggest that CysZ is dedicated to a specific pathway that assimilates sulfate for the synthesis of cysteine. Sulfate uptake via CysZ into E. coli whole cells and proteoliposome offers direct evidence of CysZ being able to mediate sulfate uptake. In addition, the cysteine synthesis pathway intermediate sulfite can interact directly with CysZ with higher affinity than sulfate. The sulfate transport activity is inhibited in the presence of sulfite, suggesting the existence of a feedback inhibition mechanism in which sulfite regulates sulfate uptake by CysZ. Sulfate uptake assays performed at different extracellular pH and in the presence of a proton uncoupler indicate that this uptake is driven by the proton gradient.  相似文献   

8.
9.
Spheroplasts ofMucor rouxii were prepared from mycelial and yeast-like cells by use of aPenicillium islandicum enzymatic complex. This enzyme preparation, which presents high chitosanase and chitinase activities, was produced by growingP. islandicum either on mycelial or yeast-like walls ofM. rouxii. The presence of magnesium sulfate as an osmotic stabilizer was critical to obtain high yields of spheroplasts from mycelial forms. In the case of yeast-like cells, pretreatment with β-mercaptoethanol followed by magnesium sulfate was essential for extensive spheroplast production.  相似文献   

10.
Heparan sulfate proteoglycans are ubiquitously located on cell surfaces and in the extracellular matrices. The negatively charged heparan sulfate chains interact with a multitude of different proteins, thereby influencing a variety of cellular and developmental processes, for example cell adhesion, migration, tissue morphogenesis, and differentiation. The human exostosin (EXT) family of genes contains five members: the heparan sulfate polymerizing enzymes, EXT1 and EXT2, and three EXT-like genes, EXTL1, EXTL2, and EXTL3. EXTL2 has been ascribed activities related to the initiation and termination of heparan sulfate chains. Here we further investigated the role of EXTL2 in heparan sulfate chain elongation by gene silencing and overexpression strategies. We found that siRNA-mediated knockdown of EXTL2 in human embryonic kidney 293 cells resulted in increased chain length, whereas overexpression of EXTL2 in the same cell line had little or no effect on heparan sulfate chain length. To study in more detail the role of EXTL2 in heparan sulfate chain elongation, we tested the ability of the overexpressed protein to catalyze the in vitro incorporation of N-acetylglucosamine and N-acetylgalactosamine to oligosaccharide acceptors resembling unmodified heparan sulfate and chondroitin sulfate precursor molecules. Analysis of the generated products revealed that recombinant EXTL2 showed weak ability to transfer N-acetylgalactosamine to heparan sulfate precursor molecules but also, that EXTL2 exhibited much stronger in vitro N-acetylglucosamine-transferase activity related to elongation of heparan sulfate chains.  相似文献   

11.
Two unicellular cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 showed contrasting responses to chromate stress with EC50 of 12 ± 2 and 150 ± 15 μM potassium dichromate respectively. There was no depletion of chromate in growth medium in both the cases. Using labeled chromate, very low accumulation (<1 nmol/108 cells) was observed in Synechocystis after incubation for 24 h in light. No accumulation of chromate could be observed in Synechococcus under these conditions. Chromate oxyanion is known to enter the cells using sulfate uptake channels. Therefore, inhibition of sulfate uptake caused by chromate was monitored using 35S labeled sulfate. IC50 values of chromate for 35sulfate uptake were higher in Synechococcus as compared to Synechocystis. The results suggested that the sulfate transporters in Synechococcus have lower affinity to chromate than those from Synechocystis possibly due to differences in affinity of sulfate receptors for chromate. Bioinformatic analyses revealed presence of sulfate and chromate transporters with considerable similarity; however, minor differences in these may play a role in their differential response to chromate. In both cases the IC50 values decreased when sulfate concentration was reduced in the medium indicating competitive inhibition of sulfate uptake by chromate. Interestingly, Synechococcus showed stimulation of growth at concentrations of chromate less than 100 μM, which affected its cell size without disturbing the ultrastructure and thylakoid organization. In Synechocystis, growth with 12 μM potassium dichromate damaged the ultrastructure and thylakoid organization with slight elongation of the cells. The results suggested that Synechococcus possesses efficient strategies to prevent entry and to remove chromate from the cell as compared to Synechocystis. This is the first time a differential response of Synechococcus 7942 and Synechocystis 6803 to chromate is reported. The contrasting characteristics observed in the two cyanobacteria will be useful in understanding the basis of resistance or susceptibility to chromate.  相似文献   

12.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

13.
The metabolism of Cephalosporium acremonium grown in a complex medium supplemented with DL-methionine or inorganic sulfate was studied. More growth occurred in a sulfate medium than in a methionine medium. Methionine-grown cells had an increased rate of respiration, a higher rate of catabolism with acetate and glucose as substrate, and higher specific activities of certain respiratory enzymes than sulfate-grown cells. Labeled acetate and glucose were assimilated at a faster rate by methionine-grown cells than sulfate-grown cells. Taurine, cystathionine, and small quantities of four acidic compounds were present in the amino acid pool of methionine-grown cells, but they were not detected in the pool of sulfate-grown cells. The differences in metabolic activity of sulfate and methionine-grown cells are discussed in regard to cephalosporin C synthesis.  相似文献   

14.

Background

Stromal fibroblasts are important determinants of tumor cell behavior. They act to condition the tumor microenvironment, influence tumor growth, support tumor angiogenesis and affect tumor metastasis. Heparan sulfate proteoglycans, present both on tumor and stromal cells, interact with a large number of ligands including growth factors, their receptors, and structural components of the extracellular matrix. Being ubiquitously expressed in the tumor microenvironment heparan sulfate proteoglycans are candidates for playing central roles in tumor-stroma interactions. The objective of this work was to investigate the role of heparan sulfate expressed by stromal fibroblasts in modulating the growth of tumor cells and in controlling the interstitial fluid pressure in a 3-D model.

Methodology/Principal Findings

We generated spheroids composed of fibroblasts alone, or composite spheroids, composed of fibroblasts and tumor cells. Here we show that stromal fibroblasts with a mutation in the heparan sulfate elongating enzyme Ext1 and thus a low heparan sulfate content, formed composite fibroblast/tumor cell spheroids with a significant lower interstitial fluid pressure than corresponding wild-type fibroblast/tumor cell composite spheroids. Furthermore, immunohistochemistry of composite spheroids revealed that the cells segregated, so that after 6 days in culture, the wild-type fibroblasts formed an inner core and the tumor cells an outer layer of cells. For composite spheroids containing Ext1-mutated fibroblasts this segregation was less obvious, indicating impaired cell migration. Analysis of tumor cells expressing the firefly luciferase gene revealed that the changes in tumor cell migration in mutant fibroblast/tumor cell composite spheroids coincided with a lower proliferation rate.

Conclusions/Significance

This is the first demonstration that stromal Ext1-levels modulate tumor cell proliferation and affect the interstitial fluid pressure in a 3-D spheroid model. Learning how structural changes in stromal heparan sulfate influence tumor cells is essential for our understanding how non-malignant cells of the tumor microenvironment influence tumor cell progression.  相似文献   

15.
During the development of Dictyostelium discoideum from the growth phase to the aggregation stage, a glycoprotein with an apparent mol. wt. of 80 kd is known to be expressed on the cell surface. This glycoprotein, referred to as contact site A, has been implicated in the formation of species-specific, EDTA-stable contacts of aggregating cells. When developing cells were labeled in vivo with [35S]sulfate, the 80-kd glycoprotein was found to be the most prominently sulfated protein. Another strongly sulfated protein had an apparent mol. wt. of 130 kd and was, like the 80-kd glycoprotein, developmentally regulated and associated with the particulate fraction of the cells. The [35S]sulfate incorporated into the 80-kd and 130-kd proteins was not present as tyrosine-O-sulfate, a modified amino acid found in many proteins of mammalian cells. D. discoideum cells incubated with [35S]sulfate in the presence of tunicamycin, an inhibitor of N-glycosylation, produced a 66-kd protein that reacted with monoclonal antibodies raised against the 80-kd glycoprotein, but no longer contained [35S]sulfate. These results suggest that sulfation of the 80-kd glycoprotein occurred on carbohydrate residues. The possible importance of sulfation for a role of the 80-kd glycoprotein in cell adhesion is discussed.  相似文献   

16.
17.
Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km = 220 μM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.  相似文献   

18.
The most common causal agents of fungal keratitis are yeasts of the Candida genus. Adhesion constitutes the first stage of pathogenesis. Previous studies have shown that glycosaminoglycans from the corneal cell surface play an essential role in bacterial keratitis, although little is known about their role in fungal infections. The objective of this work is to analyze the role that glycosaminoglycans (GAGs) play in the adhesion of fungi of the Candida genus to corneal epithelial cells. The participation of GAGs in the adhesion of fungi was studied through the specific inhibition of the synthesis of these molecules by enzymatic digestion using specific lyases and the silencing of various genes involved in heparan sulfate sulfation. The results seem to indicate that glycosaminoglycans act to some extent as receptors for this fungus, although there are differences between fungal species. Treatment with inhibitors partially reduced the adherence of fungal species. Digestion of cell surface heparan sulfate further reduced the adherence of Candida albicans and Candida glabrata compared to chondroitin sulfate, indicating that the binding is preferentially mediated by heparan sulfate. Degradation of both heparan sulfate and chondroitin sulfate produced similar effects on the adherence of Candida parapsilosis. However, adhesion of C. albicans hyphae is not dependent on GAGs, suggesting the expression of other adhesins and the recognition of other receptors present in corneal cells. Our results open the door to new strategies for stopping the adhesion of pathogenic fungi, and their subsequent invasion of the cornea; thus, reducing the probability of the keratitis development.  相似文献   

19.
Placental malaria infection is mediated by the binding of the malarial VAR2CSA protein to the placental glycosaminoglycan, chondroitin sulfate. Recombinant subfragments of VAR2CSA (rVAR2) have also been shown to bind specifically and with high affinity to cancer cells and tissues, suggesting the presence of a shared type of oncofetal chondroitin sulfate (ofCS) in the placenta and in tumors. However, the exact structure of ofCS and what determines the selective tropism of VAR2CSA remains poorly understood. In this study, ofCS was purified by affinity chromatography using rVAR2 and subjected to detailed structural analysis. We found high levels of N-acetylgalactosamine 4-O-sulfation (∼80–85%) in placenta- and tumor-derived ofCS. This level of 4-O-sulfation was also found in other tissues that do not support parasite sequestration, suggesting that VAR2CSA tropism is not exclusively determined by placenta- and tumor-specific sulfation. Here, we show that both placenta and tumors contain significantly more chondroitin sulfate moieties of higher molecular weight than other tissues. In line with this, CHPF and CHPF2, which encode proteins required for chondroitin polymerization, are significantly upregulated in most cancer types. CRISPR/Cas9 targeting of CHPF and CHPF2 in tumor cells reduced the average molecular weight of cell-surface chondroitin sulfate and resulted in a marked reduction of rVAR2 binding. Finally, utilizing a cell-based glycocalyx model, we showed that rVAR2 binding correlates with the length of the chondroitin sulfate chains in the cellular glycocalyx. These data demonstrate that the total amount and cellular accessibility of chondroitin sulfate chains impact rVAR2 binding and thus malaria infection.  相似文献   

20.
Ramus J 《Plant physiology》1974,54(6):945-949
Active transport of exogenous sulfate into log phase cells of Porphyridium aerueineum followed Michaelis-Menten kinetics, and the apparent Km for sulfate transport is approximately 2.5 × 10−6m. Molybdate, also a group VI anion, is a competitive inhibitor of sulfate transport, and the inhibition is freely reversible. Once in the cell, molybdate depresses the rate of sulfate pool utilization by blocking sulfate transfer to polysaccharides destined for secretion to the cell surface. Specifically, molybdate inhibits the formation of adenosine 5′-phosphosulfate and in turn the formation of adenosine 3′-phosphate 5′-phosphosulfate, the activated donor for sulfate transfer reactions. Combined with the previous identification of adenosine 3′-phosphate 5′-phosphosulfate, this is taken as evidence that the adenosine 5′-phosphosulfate/adenosine 3′-phosphate 5′-phosphosulfate enzymatic sequence for sulfate activation and sulfate donor reactions is operating in Porphyridium. Thiosulfate is utilized as effectively as sulfate as both a sulfur source for growth and polysaccharide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号