首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The "affinity maturation" of the humoral immune response is driven by antigen-activated somatic hypermutation (SHM) of the genes that encode antibody variable regions and the subsequent antigenic selection of mutant clones. The molecular mechanism of SHM is yet to be completely elucidated. SHM affects cytosine-guanine (C/G) and adenine-thymine (A/T) pairs with approximately equal frequency in vivo. The proposition that error-prone DNA-dependent DNA synthesis explains A/T-targeted hypermutagenesis seems to have mainstream support within the hypermutation research community at present. A major feature of SHM in vivo is that C/G hypermutation is strand unbiased, whereas A/T hypermutation is strand biased. We show that the "DNA-based polymerase error" model of A/T-targeted hypermutagenesis does not explain this important aspect of SHM.  相似文献   

2.
3.
4.
Somatic hypermutation (SHM) is a fundamental process in immunoglobulin gene maturation that results in increased affinity of antibodies toward antigens. In one hypothesis explaining SHM in human B cells, the process is initiated by enzymatic deamination of cytosine to uracil in the immunoglobulin gene V-region and this in turn triggers mutation-prone forms of uracil-DNA base excision repair (BER). Yet, an uncertainty with this model is that BER of uracil-DNA in mammalian cells is generally error-free, wherein DNA polymerase beta (pol beta) conducts gap-filling synthesis by insertion of bases according to Watson-Crick rules. To evaluate this inconsistency, we examined pol beta expression in various SHM proficient human BL2 cell line subclones. We report that expression of pol beta in SHM proficient cell lines was strongly down-regulated. In contrast, in other BL2 subclones, we found that SHM was deficient and that pol beta expression was much higher than in the SHM proficient subclones. We also found that overexpression of recombinant human pol beta in a SHM proficient subclone abrogated its capacity for SHM. These results suggest that down-regulation of the normal BER gap-filling DNA polymerase, pol beta, accompanies induced SHM in BL2 cells. This is consistent with the hypothesis that normal error-free BER must be silenced to make way for an error-prone BER process that may be required during somatic hypermutation.  相似文献   

5.
Somatic hypermutation (SHM) and class switch recombination (CSR) allow B cells to make high affinity antibodies of various isotypes. Both processes are initiated by activation-induced cytidine deaminase (AID) to generate dG:dU mismatches in the immunoglobulin genes that are resolved differently in SHM and CSR to introduce point mutations and recombination, respectively. The MutL homolog MLH3 has been implicated in meiosis and DNA mismatch repair (MMR). Since it interacts with MLH1, which plays a role in SHM and CSR, we examined these processes in Mlh3-deficient mice. Although deficiencies in other MMR proteins result in defects in SHM, Mlh3(-/-) mice exhibited an increased frequency of mutations in their immunoglobulin variable regions, compared to wild type littermates. Alterations of mutation spectra were observed in the Jh4 flanking region in Mlh3(-/-) mice. Nevertheless, Mlh3(-/-) mice were able to switch to IgG3 or IgG1 with similar frequencies to control mice. This is the first instance where a loss of a DNA repair protein has a positive impact on the rate of SHM, suggesting that Mlh3 normally inhibits the accumulation of mutations in SHM.  相似文献   

6.
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes. Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).  相似文献   

7.
To generate high affinity antibodies during an immune response, B cells undergo somatic hypermutation (SHM) of their immunoglobulin genes. Error-prone translesion synthesis (TLS) DNA polymerases have been reported to be responsible for all mutations at template A/T and at least a fraction of G/C transversions. In contrast to A/T mutations which depend on PCNA ubiquitination, it remains unclear how G/C transversions are regulated during SHM. Several lines of evidence indicate a mechanistic link between the Fanconi Anemia (FA) pathway and TLS. To investigate the contribution of the FA pathway in SHM we analyzed FancG-deficient B cells. B cells deficient for FancG, an essential member of the FA core complex, were hypersensitive to treatment with cross-linking agents. However, the frequencies and nucleotide exchange spectra of SHM remained comparable between wild-type and FancG-deficient B cells. These data indicate that the FA pathway is not involved in regulating the outcome of SHM in mammals. In addition, the FA pathway appears dispensable for class switch recombination.  相似文献   

8.
The generation of high affinity antibodies in B cells critically depends on translesion synthesis (TLS) polymerases that introduce mutations into immunoglobulin genes during somatic hypermutation (SHM). The majority of mutations at A/T base pairs during SHM require ubiquitination of PCNA at lysine 164 (PCNA-Ub), which activates TLS polymerases. By comparing the mutation spectra in B cells of WT, TLS polymerase η (Polη)-deficient, PCNA(K164R)-mutant, and PCNA(K164R);Polη double-mutant mice, we now find that most PCNA-Ub-independent A/T mutagenesis during SHM is mediated by Polη. In addition, upon exposure to various DNA damaging agents, PCNA(K164R) mutant cells display strongly impaired recruitment of TLS polymerases, reduced daughter strand maturation and hypersensitivity. Interestingly, compared to the single mutants, PCNA(K164R);Polη double-mutant cells are dramatically delayed in S phase progression and far more prone to cell death following UV exposure. Taken together, these data support the existence of PCNA ubiquitination-dependent and -independent activation pathways of Polη during SHM and DNA damage tolerance.  相似文献   

9.
The use of the Flanagan and Barondes model(14) describing affinity partitioning as an aid in designing separation systems is discussed. Experimental studies are described for affinity partitioning of vancomycin, a glycopeptide antibiotic, in a water-methoxypolyethylene glycol-dextran system using methoxypolyethylene glycol-dextran system using methoxypolyethylene glycol bound D-alanyl-Dalanyl-D-alanine or D-alanyl-D-alanine as the reversible affinity ligand. Even for this ideal case of 1:1 binding interaction, the model only qualitatively predicts the affinity effect when all model parameters are measured independently. The discrepancy between measured and predicted values can be attributed to a difference in exposed surface of the free antibiotic and ligand compared to that in the bound state.The effect of experimentally varying model parameters is also described. It was determined that a polymers-ligand which partitions more strongly to the top phase would provide the most significant enhancement to this affinity partitioning system. Such an improvement can be made by increasing the molecular weight of the hydrophobicity of the polymer-ligand. A process for vancomycin recovery from fermentation broth using D--alanyl-D-alanine sepharose as affinity ligand is described.  相似文献   

10.
11.
These studie s were done to determine four basic intrinsic properties of poly(U)-agarose affinity columns. Specificity of binding studies demonstrated that binding to these columns is highly specific with >90% complementary binding and 3% noncomplementary binding. Sensitivity of binding studies indicated that a minimum sequence of 10 adenylates is required for detectable complementary binding. Selectivity of binding studies revealed that nonsequential adenylates in native RNAs and randomly distribut edadenylates in synthetic poly(A)-poly(C) co-polymers did not bind to poly(U)-agarose affinity columns. Whereas, affinity of binding studies demonstrated that A=U complementary base pairing is independent of chain-lengths of 25 a denylates and dependent of chain-lengths of <25 adenylates. Thus the data demonstrates that poly(U)-agarose affinity chromatography is scientifically sound and expedient for thedetection and isolation of poly(A)-containing cellular and viral RNAs.  相似文献   

12.
In oxygen affinity characteristics bird blood appears to haveseveral features that distinguish it from mammalian blood. Fordomesticated species at least the range of oxygen half saturationvalues is extremely wide. A difference in the shape of the oxygendissociation curve has been recorded by several authors withan increase in sigmoidocity with increasing oxygen saturation.There is evidence that the oxygen affinity determining organicphosphate of bird red blood cells inositol pentaphosphate (IP5)is relatively metabolically inert. This suggests that modulationof blood oxygen affinity is primarily achieved by altering theIP5 hemoglobin interaction rather than varying IP5 levels perse. In contrast to mammals carbon dioxide has no direct effecton whole blood oxygen affinity for some bird species (hen chickgoose) or it may cause the oxygen affinity to increase (pigeonflamingo). Carbon dioxide is a blood oxygen affinity modulatorof some flexibility its effect in both direction and magnitudebeing dependent on the hemoglobin type red cell pH and organicphosphate levels. The physiological significance of these distinguishingfeatures is discussed.  相似文献   

13.
Serine hydroxymethyltransferases (SHMs) are important enzymes of cellular one-carbon metabolism and are essential for the photorespiratory glycine-into-serine conversion in leaf mesophyll mitochondria. In Arabidopsis (Arabidopsis thaliana), SHM1 has been identified as the photorespiratory isozyme, but little is known about the very similar SHM2. Although the mitochondrial location of SHM2 can be predicted, some data suggest that this particular isozyme could be inactive or not targeted into mitochondria. We report that SHM2 is a functional mitochondrial SHM. In leaves, the presequence of SHM2 selectively hinders targeting of the enzyme into mesophyll mitochondria. For this reason, the enzyme is confined to the vascular tissue of wild-type Arabidopsis, likely the protoxylem and/or adjacent cells, where it occurs together with SHM1. The resulting exclusion of SHM2 from the photorespiratory environment of mesophyll mitochondria explains why this enzyme cannot substitute for SHM1 in photorespiratory metabolism. Unlike the individual shm1 and shm2 null mutants, which require CO(2)-enriched air to inhibit photorespiration (shm1) or do not show any visible impairment (shm2), double-null mutants cannot survive in CO(2)-enriched air. It seems that SHM1 and SHM2 operate in a redundant manner in one-carbon metabolism of nonphotorespiring cells with a high demand of one-carbon units; for example, during lignification of vascular cells. We hypothesize that yet unknown kinetic properties of SHM2 might render this enzyme unsuitable for the high-folate conditions of photorespiring mesophyll mitochondria.  相似文献   

14.
A novel technique for affinity precipitation has been developed in which multimeric target proteins are precipitated as a result of network formation by polymer-conjugated ligands (polyligands). A polyligand precipitant for avidin was synthesized by conjugation of biotin to a polyacrylamide-based backbone. The effects of mixing conditions, ligand substitution frequency, and molecular weight on affinity precipitation were examined using the biotin-PAAm precipitant. Biotin was replaced by iminobiotin to study the effect of the ligand-protein dissociation constant o affinity precipitation. The iminobiotin-PAAm precipitant was also used to examine the reversibility of the precipitation and recovery of the target protein after precipitation. (c) 1993 Wiley & Sons, Inc.  相似文献   

15.
用硫氰酸盐洗脱法直接测定噬菌体抗体的相对亲和力   总被引:5,自引:0,他引:5  
抗体与相应抗原的结合可以被硫氰酸盐洗脱而解离,抗体的亲和力越高则解离所需要的硫氰酸盐浓度就越大,这一原理在传统的免疫学实验中被用来测定单克隆抗体或多克隆抗体的相对亲和力。如果证明该原理同样适用于噬菌体抗体库技术,则可以建立一种直接测定噬菌体抗体相对亲和力的简便方法。首先将噬菌体抗体与工作浓度的硫氰酸盐共孵育,以证明这一过程并不影响其后的ELISA反应,然后参照硫氰酸盐洗脱法测定完整抗体分子和Fab段相对亲和力的方法,在ELISA实验中以酶标抗M13为二抗检测了5个单克隆噬菌体抗体的相对亲和力,并与相对应的可溶性Fab段的相对亲和力进行了比较。被测抗体中包括3个克隆的抗角蛋白抗体和2个克隆的抗乙型肝炎表面抗原抗体。结果发现,用硫氰酸盐洗脱法测定5个噬菌体抗体所得到的亲和力排序与测定其相应可溶性Fab段所得结果一致,表明硫氰酸盐洗脱法可作为一种简便快速的方法用来直接测定噬菌体抗体的相对亲和力。  相似文献   

16.
17.
The review concerns isolation and purification of nucleases by affinity chromatography. Different stationary ligands and the methods for their immobilization on supports are described, along with diverse eluents and various procedures for a nuclease detachment from the affinity sorbents. The data on the affinity chromatography application for measuring the dissociation constants of the enzyme complexes with either immobilized or soluble ligands are compiled.  相似文献   

18.
Anti-PEG IgM was purified by affinity chromatography using variable length PEG chains (5, 10, 20 and 30 kDa) as affinity ligands. Maximal binding of anti-PEG IgM was observed using the 30 kDa PEG-derivatized NuGel (single passage). Purified anti-PEG IgM was characterized for binding to PEG functionalized proteins/peptides by surface plasmon resonance, western blotting and ELISA. Anti-PEG IgM, in solution and adsorbed on 20 kDa PEG-derivatized NuGel, was subjected to pepsin digestion followed by affinity chromatography. SDS-PAGE analysis of eluates in both preparations yielded one fragment that was similar in size. However, an additional lower molecular weight band was observed in solution-digested affinity purified material that was not present in the eluate from the material subjected to pepsin digestion on the affinity matrix. The lower MW fragment could be eluted under milder conditions, suggesting loss of binding multiplicity. Analysis by mass spectrometry yielded molecular weights of 132 kDa (both) and 82 kDa (solution) for the respective fragments. N-terminal sequencing of both fragments resulted in primary sequences (heavy and light chains) that were not only identical to each other but also to those of native IgM. The anti-PEG IgM fragments were characterized for binding to pegylated interferon alfa-2a by ELISA. The results from these studies suggest that affinity purified anti-PEG IgM and fragments can be used as probes in detection assays for PEG functionalized biotherapeutics in pre-clinical and clinical studies.  相似文献   

19.
DNA damage tolerance is regulated at least in part at the level of proliferating cell nuclear antigen (PCNA) ubiquitination. Monoubiquitination (PCNA-Ub) at lysine residue 164 (K164) stimulates error-prone translesion synthesis (TLS), Rad5-dependent polyubiquitination (PCNA-Ub(n)) stimulates error-free template switching (TS). To generate high affinity antibodies by somatic hypermutation (SHM), B cells profit from error-prone TLS polymerases. Consistent with the role of PCNA-Ub in stimulating TLS, hypermutated B cells of PCNA(K164R) mutant mice display a defect in generating selective point mutations. Two Rad5 orthologs, HLTF and SHPRH have been identified as alternative E3 ligases generating PCNA-Ub(n) in mammals. As PCNA-Ub and PCNA-Ub(n) both make use of K164, error-free PCNA-Ub(n)-dependent TS may suppress error-prone PCNA-Ub-dependent TLS. To determine a regulatory role of Shprh and Hltf in SHM, we generated Shprh/Hltf double mutant mice. Interestingly, while the formation of PCNA-Ub and PCNA-Ub(n) is prohibited in PCNA(K164R) MEFs, the formation of PCNA-Ub(n) is not abolished in Shprh/Hltf mutant MEFs. In line with these observations Shprh/Hltf double mutant B cells were not hypersensitive to DNA damage. Furthermore, SHM was normal in Shprh/Hltf mutant B cells. These data suggest the existence of an alternative E3 ligase in the generation of PCNA-Ub(n).  相似文献   

20.
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号