首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxygen consumption of luminous bacteria determined by the Thunberg micro respirometer and by the time which elapses before the luminescence of an emulsion of luminous bacteria in sea water begins to dim, when over 99 per cent of the dissolved oxygen has been consumed, agree exactly. Average values for oxygen consumption at an average temperature of 21.5°C. are 4.26 x 10–11 mg. O2 per bacterium; 2.5 x 104 mg. per kilo and 5.6 mg. O2 per sq. m. of bacterial surface. The only correct comparison of the oxygen consumption of different organisms or tissues is in terms of oxygen used per unit weight with a sufficient oxygen tension so that oxygen consumption is independent of oxygen tension. Measurement of the oxygen concentration which just allows full luminescence, compared with a calculation of the oxygen concentration at the surface of a bacterial cell just necessary to allow the observed respiration throughout all parts of the cell, indicates that oxygen must diffuse into the bacterium much more slowly than through gelatin or connective tissue but not as slowly as through chitin.  相似文献   

2.
THE EFFECT OF INDUCED HYPOTHERMIA UPON OXYGEN CONSUMPTION IN THE RAT BRAIN   总被引:7,自引:4,他引:3  
The effect of hypothermia upon cerebral metabolic rate for oxygen (CMRO2) was studied in artificially ventilated rats, anaesthetized with nitrous oxide. Cerebral blood flow was measured with a modification of the Kety and Schmidt technique using 133xenon. CMRO2, was found to decrease linearily with temperature in the temperature range 37°C-22°C. At normal temperatures CMRO2, fell by about 5 per cent per degree C. At a body temperature of 22°C both cerebral blood flow and CMRO2, were reduced to about 25 per cent of normal.  相似文献   

3.
A method is described for measuring the concentration of oxygen to allow just perceptible luminescence of luminous bacteria. The value turns out to be extraordinarily low, about 0.005 mm. Hg pressure O2 or 1 part by weight oxygen dissolved in 3,700,000,000 cc. sea water.  相似文献   

4.
5.
Methods are described for measuring the light emitted by an emulsion of luminous bacteria of given thickness, and calculating the light emitted by a single bacterium, measuring 1.1 x 2.2 micra, provided there is no absorption of light in the emulsion. At the same time, the oxygen consumed by a single bacterium was measured by recording the time for the bacteria to use up .9 of the oxygen dissolved in sea water from air (20 per cent oxygen). The luminescence intensity does not diminish until the oxygen concentration falls below 2 per cent, when the luminescence diminishes rapidly. Above 2 per cent oxygen (when the oxygen dissolving in sea water from pure oxygen at 760 mm. Hg pressure = 100 per cent) the bacteria use equal amounts of oxygen in equal times, while below 2 per cent oxygen it seems very likely that rate of oxygen absorption is proportional to oxygen concentration. By measuring the time for a tube of luminous bacteria of known concentration saturated with air (20 per cent oxygen) to begin to darken (2 per cent oxygen) we can calculate the oxygen absorbed by one bacterium per second. The bacteria per cc. are counted on a blood counting slide or by a centrifugal method, after measuring the volume of a single bacterium (1.695 x 10–12 cc.). Both methods gave results in good agreement with each other. The maximum value for the light from a single bacterium was 24 x 10–14 lumens or 1.9 x 10–14 candles. The maximum value for lumen-seconds per mg. of oxygen absorbed was 14. The average value for lumen-seconds per mg. O2 was 9.25. The maximum values were selected in calculating the efficiency of light production, since some of the bacteria counted may not be producing light, although they may still be using oxygen. The "diet" of the bacteria was 60 per cent glycerol and 40 per cent peptone. To oxidize this mixture each mg. of oxygen would yield 3.38 gm. calories or 14.1 watts per second. 1 lumen per watt is therefore produced by a normal bacterium which emits 14 lumen-seconds per mg. O2 absorbed. Since the maximum lumens per watt are 640, representing 100 per cent efficiency, the total luminous efficiency if .00156. As some of the oxygen is used in respiratory oxidation which may have nothing to do with luminescence, the luminescence efficiency must be higher than 1 lumen per watt. Experiments with KCN show that this substance may reduce the oxygen consumption to 1/20 of its former value while reducing the luminescence intensity only ¼. A partial separation of respiratory from luminescence oxidations is therefore effected by KCN, and our efficiency becomes 5 lumens per watt, or .0078. This is an over-all efficiency, based on the energy value of the "fuel" of the bacteria, regarded as a power plant for producing light. It compares very favorably with the 1.6 lumens per watt of a tungsten vacuum lamp or the 3.9 lumens per watt of a tungsten nitrogen lamp, if we correct the usual values for these illuminants, based on watts at the lamp terminals, for a 20 per cent efficiency of the power plant converting the energy of coal fuel into electric current. The specific luminous emission of the bacteria is 3.14 x 10–6 lumens per cm2. One bacterium absorbs 215,000 molecules of oxygen per second and emits 1,280 quanta of light at λmax = 510µµ. If we suppose that a molecule of oxygen uniting with luminous material gives rise to the emission of 1 quantum of light energy, only 1/168 of the oxygen absorbed is used in luminescence. On this basis the efficiency becomes 168 lumens per watt or 26.2 per cent.  相似文献   

6.
It is shown that in several of the higher invertebrate animals, oxygen consumption is directly proportional to the oxygen tension in the sea water, over a wide range.  相似文献   

7.
8.
9.
10.
1. The addition of Na taurocholate produces an increase in the rate of respiration at a concentration of 0.0000125 M, and a decrease at 0.001 M and in higher concentrations. 2. NaCl is antagonized by Na taurocholate, the most favorable proportion being 14,375 parts of NaCl to 1 part of Na taurocholate (molecular proportions). 3. Solutions of saponin, at concentrations from 0.00005 M to 0.001 M, decrease the rate of respiration: lower concentrations produce no effect.  相似文献   

11.
12.
1. It is shown that Sulfomonas thiooxidans oxidizes elementary sulfur completely to sulfuric acid. Sodium thiosulfate is oxidized by this organism completely to sulfate. Sulfomonas thiooxidans differs, in this respect, from various other sulfur-oxidizing bacilli which either produce elementary sulfur, from the thiosulfate, or convert it into sulfates and persulfates. 2. The organism derives its carbon from the CO2 of the atmosphere, but is incapable of deriving the carbon from carbonates or organic matter. 3. The S:C, or ratio between the amount of sulfur oxidized to sulfate and amount of carbon assimilated chemosynthetically from the CO2 of the atmosphere, is, with elementary sulfur as a source of energy, 31.8, and with thiosulfate 64.2. The higher ratio in the case of the thiosulfate is due to the smaller amount of energy liberated in the oxidation of sulfur compound than in the elementary form. 4. Of the total energy made available in the oxidation of the sulfur to sulfuric acid, only 6.65 per cent is used by the organism for the reduction of atmospheric CO2 and assimilation of carbon. 5. Sulfates do not exert any injurious effect upon sulfur oxidation by Sulfomonas thiooxidans. Any effect obtained is due to the cation rather than the sulfate radical. Nitrates exert a distinctly injurious action both on the growth and respiration of the organism. 6. There is a definite correlation between the amount of sulfur present and velocity of oxidation, very similar to that found in the growth of yeasts and nitrifying bacteria. Oxidation reaches a maximum with about 25 gm. of sulfur added to 100 cc. of medium. However, larger amounts of sulfur have no injurious effect. 7. Dextrose does not exert any appreciable injurious effect in concentrations less than 5 per cent. The injurious effect of peptone sets in at 0.1 per cent concentration and brings sulfur oxidation almost to a standstill in 1 per cent concentration. Dextrose does not exert any appreciable influence upon sulfur oxidation and carbon assimilation from the carbon dioxide of the atmosphere. 8. Sulfomonas thiooxidans can withstand large concentrations of sulfuric acid. The oxidation of sulfur is affected only to a small extent even by 0.25 molar initial concentration of the acid. In 0.5 molar solutions, the injurious effect becomes marked. The organism may produce as much as 1.5 molar acid, without being destroyed. 9. Growth is at an optimum at a hydrogen ion concentration equivalent to pH 2.0 to 5.5, dropping down rapidly on the alkaline side, but not to such an extent on the acid, particularly when a pure culture is employed. 10. Respiration of the sulfur-oxidizing bacteria can be studied by using the filtrate of a vigorously growing culture, to which a definite amount of sulfur is added, and incubating for 12 to 24 hours.  相似文献   

13.
14.
The influence of hyperthermia on cerebral blood flow, cerebral metabolic rate for oxygen and cerebral metabolite levels was studied by increasing body temperature from 37° to 40°C and 42°C in rats under nitrous oxide anaesthesia maintained at constant arterial CO2 tension. The metabolic rate for oxygen increased by 5-6% per degree centigrade. At 42°C the increase in cerebral blood Row was comparable to that in the metabolic rate. The increased temperatures were not accompanied by changes in organic phosphates (phosphocreatine, ATP, ADP or AMP) or in lactate/pyruvate ratio. There was an increase in the tissue to blood glucose concentration ratio. At steady state, there was an increase in glucose-6-phosphate but no other changes in glycolytic metabolites or citric acid cycle intermediates, and the only change in amino acids studied (glutamate, glutamine, aspartate, alanine and GABA) was an increase in glutamate concentration.  相似文献   

15.
16.
1. A method has been described whereby the intensity of the light of luminous bacteria may be measured in a quantitative manner. 2. It is pointed out that the temperature coefficients for light intensity do not follow the van''t Hoff rule, but are higher and vary with each 10° temperature interval. 3. From a comparison with other data it is found that the process is not a simple one, but that the observed curve is the resultant of several reactions which proceed simultaneously. 4. The discrepancies in the temperature coefficients in the neighborhood of the "optimum temperature" may be due to a process of coagulation of the colloidal particles of the enzyme. This coagulation will tend to cause a deviation of the curve away from that normal for chemical reactions.  相似文献   

17.
A conservative statement would therefore be that luminous bacteria show no changes in luminescence as a result of illumination by 625 foot candles for 1.5 minutes when examined 1/200 of a second after exposure, and none as the result of illumination by 15,000 foot candles for 6 minutes when examined ⅙ of a second after exposure.  相似文献   

18.
19.
20.
实验结果表明:照光时绿豆叶片分离线粒体通过细胞色素氧化酶途径的NADH氧化部分受阻,电子转向交替途径。不产生能量,不受能荷控制的NADH氧化途径有利于绿色细胞线粒体在光合作用时执行其提供碳架的功能。看来绿色细胞线粒体本身具有对光的敏感性,在照光时调节呼吸途径以适应其功能的转换。呼吸途径的转换机制目前还不清楚。绿豆种子线粒体与叶片线粒体不同,没有上述的这种对光的反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号