首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Glass electrode measurements of the pH value of the sap of cells of Nitella show that azure B in the form of free base penetrates the vacuoles and raises the pH value of the sap to about the same degree as the free base of the dye added to the sap in vitro, but the dye salt dissolved in the sap does not alter the pH value of the sap. It is concluded that the dye penetrates the vacuoles chiefly in the form of free base and not as salt. The dye from methylene blue solution containing azure B free base as impurity penetrates and accumulates in the vacuole. This dye must be azure B in the form of free base, since it raises the pH value of the sap to about the same extent as the free base of azure B dissolved in the sap in vitro. The dye absorbed by the chloroform from methylene blue solution behaves like the dye penetrating the vacuole. These results confirm those of spectrophotometric analysis previously published. Crystal violet exists only in one form between pH 5 and pH 9.2, and does not alter the pH value of the sap at the concentrations used. It does not penetrate readily unless cells are injured. A theory of "multiple partition coefficients" is described which explains the mechanism of the behavior of living cells to these dyes. When the protoplasm is squeezed into the sap, the pH value of the mixture is higher than that of the pure sap. The behavior of such a mixture to the dye is very much like that of the sap except that with azure B and methylene blue the rise in the pH value of such a mixture is not so pronounced as with sap when the dye penetrates into the vacuoles. Spectrophotometric measurements show that the dye which penetrates from methylene blue solution has a primary absorption maximum at 653 to 655 mµ (i.e., is a mixture of azure B and methylene blue, with preponderance of azure B) whether we take the sap alone or the sap plus protoplasm. These results confirm those previously obtained with spectrophotometric measurements.  相似文献   

2.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

3.
Spectrophotometric measurements show that it is chiefly the trimethyl thionin that is present in the sap extracted from the vacuoles of uninjured cells of Nitella or Valonia which have been placed in methylene blue solution at a little above pH 9. Whether these measurements were made immediately or several hours later the same results were obtained. Methylene blue is detected in the sap (1) when the cells are injured or (2) when the contamination of the sap from the stained cell wall occurs at the time of extraction. The sap is found to be incapable of demethylating methylene blue dissolved in it even on standing for several hours. It is somewhat uncertain as to whether the trimethyl thionin penetrated as such from the external methylene blue solution which generally contains this dye as impurity (in too small concentration for detection by spectrophotometer but detectable by extraction with chloroform), or whether it has formed from methylene blue in the protoplasm. The evidences described in the text tend to favor the former explanation. Theory is discussed on basis of more rapid penetration of trimethyl thionin (in form of free base) than of methylene blue, or of trimethyl thionin in form of salt.  相似文献   

4.
When cells of Nitella are placed in buffer solutions at pH 9, there is a very slow and gradual increase in the pH of the sap from pH 5.6 to 6.4 (when death of the cells takes place). If the living cells are placed in 0.002 per cent dye solutions of brilliant cresyl blue at different pH values (from pH 6.6 to pH 9), it is found that the rate of penetration of the dye, and the final equilibrium attained, increases with increase in pH value, which can be attributed to an increase in the active protein (or other amphoteric electrolyte) in the cell which can combine with the dye.  相似文献   

5.
When living cells of Nitella are exposed to an acetate buffer solution until the pH value of the sap is decreased and subsequently placed in a solution of brilliant cresyl blue, the rate of penetration of dye into the vacuole is found to decrease in the majority of cases, and increase in other cases, as compared with the control cells which are transferred to the dye solution directly from tap water. This decrease in the rate is not due to the lowering of the pH value of the solution just outside the cell wall, as a result of diffusion of acetic acid from the cell when cells are removed from the buffer solution and placed in the dye solution, because the relative amount of decrease (as compared with the control) is the same whether the external solution is stirred or not. Such a decrease in the rate may be brought about without a change in the pH value of the sap if the cells are placed in the dye solution after exposure to a phosphate buffer solution in which the pH value of the sap remains normal. The rate of penetration of dye is then found to decrease. The extent of this decrease is the greater the lower the pH value of the solution. It is found that hydrochloric acid and boric acid have no effect while phosphoric acid has an inhibiting effect at pH 4.8 on stirring. Experiments with neutral salt solutions indicate that a direct effect on the cell (decreasing penetration) is due to monovalent base cations, while there is no such effect directly on the dye. It is assumed that the effect of the phosphate and acetate buffer solutions on the cell, decreasing the rate of penetration, is due (1) to the penetration of these acids into the protoplasm as undissociated molecules, which dissociate upon entrance and lower the pH value of the protoplasm or to their action on the surface of the protoplasm, (2) to the effect of base cations on the protoplasm (either at the surface or in the interior), and (3) possibly to the effect of certain anions. In this case the action of the buffer solution is not due to its hydrogen ions. In the case of living cells of Valonia under the same experimental conditions as Nitella it is found that the rate of penetration of dye decreases when the pH value of the sap increases in presence of NH3, and also when the pH value of the sap is decreased in the presence of acetic acid. Such a decrease may be brought about even when the cells are previously exposed to sea water containing HCl, in which the pH value of the sap remains normal.  相似文献   

6.
A glass electrode apparatus is described with which pH measurements can be made with as small volumes as 2 drops (about 0.14 cc.) of solution. Using this apparatus the change of pH of the vacuolar sap of Nitella, due to the penetration of brilliant cresyl blue, has been readily followed. The sap and the dye have been found to poison the usual type of hydrogen electrode.  相似文献   

7.
When living cells of Nitella are exposed to a solution of sodium acetate and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, a decrease in the rate of penetration of dye is found, without any change in the pH value of the sap. It is assumed that this inhibiting effect is caused by the action of sodium on the protoplasm. This effect is not manifest if the dye solution is made up with phosphate buffer mixture at pH 7.85. It is assumed that this is due to the presence of a greater concentration of base cations in the phosphate buffer mixture. In the case of cells previously exposed to solutions of acetic acid the rate of penetration of dye decreases with the lowering of the pH value of the sap. This inhibiting effect is assumed to be due chiefly to the action of acetic acid on the protoplasm, provided the pH value of the external acetic acid is not so low as to involve an inhibiting effect on the protoplasm by hydrogen ions as well. It is assumed that the acetic acid either has a specific effect on the protoplasm or enters as undissociated molecules and by subsequent dissociation lowers the pH value of the protoplasm. With acetate buffer mixture the inhibiting effect is due to the action of sodium and acetic acid on the protoplasm. The inhibiting effect of acetic acid and acetate buffer mixture is manifested whether the dye solution is made up with borate or phosphate buffer mixture at pH 7.85. It is assumed that acetic acid in the vacuole serves as a reservoir so that during the experiment the inhibiting effect still persists.  相似文献   

8.
When the living cells of Nitella are placed in a solution of brilliant cresyl blue containing NH4Cl, the rate of accumulation of the dye in the sap is found to be lower than when the cells are placed in a solution of dye containing no NH4Cl and this may occur without any increase in the pH value of the cell sap. This decrease is found to be primarily due to the presence of NH3 in the sap and seems not to exist where NH3 is present only in the external solution at the concentration used.  相似文献   

9.
Experiments on the exit of brilliant cresyl blue from the living cells of Nitella, in solutions of varying external pH values containing no dye, confirm the theory that the relation of the dye in the sap to that in the external solution depends on the fact that the dye exists in two forms, one of which (DB) can pass through the protoplasm while the other (DS) passes only slightly. DB increases (by transformation of DS to DB) with an increase in the pH value, and is soluble in substances like chloroform and benzene. DS increases with decrease in pH value and is insoluble (or nearly so) in chloroform and benzene. The rate of exit of the dye increases as the external pH value decreases. This may be explained on the ground that DB as it comes out of the cell is partly changed to DS, the amount transformed increasing as the pH value decreases. The rate of exit of the dye is increased when the pH value of the sap is increased by penetration of NH3.  相似文献   

10.
The effect of various substances on living cells may be advantageously studied by exposing them to such substances and observing their subsequent behavior in solutions of a basic dye, brilliant cresyl blue. The rate of penetration of the basic dye, brilliant cresyl blue, is decreased when cells are exposed to salts with monovalent cations before they are placed in the dye solution (made up with borate buffer mixture). This inhibiting effect is assumed to be due to the effect of the salts on the protoplasm. This effect is not readily reversible when cells are transferred to distilled water, but it is removed by salts with bivalent or trivalent cations. In some cases it disappears in dye made up with phosphate buffer mixture, or with borate buffer mixture at the pH value in which the borax predominates, and in the case of NaCl it disappears in dye containing NaCl. No inhibiting effect is seen when cells are exposed to NaCl solution containing MgCl2 before they are placed in the dye solution. The rate of penetration of dye is not decreased when cells are previously exposed to salts with bivalent and trivalent cations. The rate is slightly increased when cells are placed in the dye solution containing a salt with monovalent cation and probably with bivalent or trivalent cations. In the case of the bivalent and trivalent salts the increase is so slight that it may be negligible.  相似文献   

11.
Living cells of Nitella were placed in different concentrations of brilliant cresyl blue solutions at pH 6.9. It was found that the greater the concentration of the external dye solution, the greater was the speed of accumulation of the dye in the cell sap and higher was the concentration of dye found in the sap at equilibrium. Analysis of the time curves showed that the process may be regarded as a reversible pseudounimolecular reaction. When the concentration in the sap is plotted as ordinates and the concentration in the outside solution as abscissae the curve is convex toward the abscissae. There is reason to believe that secondary changes involving injury take place as the dye accumulates and that if these changes did not occur the curve would be concave toward the abscissae. The process may be explained as a chemical combination of the dye with a constituent of the cell. This harmonizes with the fact that the temperature coefficient is high (about 4.9). Various other possible explanations are discussed.  相似文献   

12.
The vacuolar surface of Nitella is covered with a non-aqueous film too thin to be visible as a separate membrane. The motion of the protoplasm may subject this film to a good deal of mechanical disturbance. Apparently this does not rupture the film for no dye escapes into the protoplasm as the result of such disturbance when the vacuolar sap is deeply stained with neutral red or brilliant cresyl blue. When the deeply stained central vacuole breaks up into several smaller vacuoles, leaving the outer protoplasmic surface in its normal position, there is no evidence of the escape of dye into the protoplasm through the film surrounding the vacuole.  相似文献   

13.
The rate of diffusion through the non-aqueous layer of the protoplasm depends largely on the partition coefficients mentioned above. Since these cannot be determined we have employed an artificial system in which chloroform is used in place of the non-aqueous layer of the protoplasm. The partition coefficients may be roughly determined by shaking up the aqueous solutions with chloroform and analyzing with the spectrophotometer (which is necessary with methylene blue because we are dealing with mixtures). This will show what dyes may be expected to pass through the protoplasm into the vacuole in case it behaves like the artificial system. From these results we may conclude that the artificial system and the living cell act almost alike toward methylene blue and azure B, which supports the notion of non-aqueous layers in the protoplasm. There is a close resemblance between Valonia and the artificial system in their behavior toward these dyes at pH 9.5. In the case of Nitella, on the other hand, with methylene blue solution at pH 9.2 the sap in the artificial system takes up relatively more azure B (absorption maximum at 650 mµ) than the vacuole of the living cell (655 mµ). But both take up azure B much more rapidly than methylene blue. A comparison cannot be made between the behavior of the artificial system and that of the living cell at pH 5.5 since in the latter case there arises a question of injury to cells before enough dye is collected in the sap for analysis.  相似文献   

14.
The exit of accumulated ammonia from the sap of Valonia macrophysa, Kütz., into normal (nearly ammonia-free) sea water, has been studied in light (alternation of daylight and darkness) and in darkness. Exit is always preceded by an induction period lasting 1 or more days. This is longer in darkness. After exit starts the rate is greater in light than in darkness. The pH of the sap drops off soon after the cells are exposed to normal sea water even before any definite decrease in the ammonia concentration of the sap has occurred. This suggests that the decrease in the pH is due to the loss of a very small amount of NH3 or NH4OH without a corresponding gain of sodium as a base. In most cases sodium replaced the ammonia lost during exit, but there is some evidence that potassium may also replace ammonia. To account for the induction period it is suggested that other species than NH4 X are concerned in the transport of ammonia, for example urea or amino acids.  相似文献   

15.
The accumulation of ammonia takes place more rapidly in light than in darkness. The accumulation appears to go on until a steady state is attained. The steady state concentration of ammonia in the sap is about twice as great in light as in darkness. Both effects are possibly due to the fact that the external pH (and hence the concentration of undissociated ammonia) outside is raised by photosynthesis. Certain "permeability constants" have been calculated. These indicate that the rate is proportional to the concentration gradient across the protoplasm of NH4 X which is formed by the interaction of NH3 or NH4OH and HX, an acid elaborated in the protoplasm. The results are interpreted to mean that HX is produced only at the sap-protoplasm interface and that on the average its concentration there is about 7 times as great as at the sea water-protoplasm interface. This ratio of HX at the two surfaces also explains why the concentration of undissociated ammonia in the steady state is about 7 times as great in the sea water as in the sap. The permeability constant P'''''' appears to be greater in the dark. This is possibly associated with an increase in the concentration of HX at both interfaces, the ratio at the two surfaces, however, remaining about the same. The pH of sap has been determined by a new method which avoids the loss of gas (CO2), an important source of error. The results indicate that the pH rises during accumulation but the extent of this rise is smaller than has hitherto been supposed. As in previous experiments, the entering ammonia displaced a practically equivalent amount of potassium from the sap and the sodium concentration remained fairly constant. It seems probable that the pH increase is due to the entrance of small amounts of NH3 or NH4OH in excess of the potassium lost as a base.  相似文献   

16.
When the only solute present is a weak acid, HA, which penetrates as molecules only into a living cell according to a curve of the first order and eventually reaches a true equilibrium we may regard the rate of increase of molecules inside as See PDF for Equation where PM is the permeability of the protoplasm to molecules, Mo, denotes the external and Mi the internal concentration of molecules, Ai denotes the internal concentration of the anion A- and See PDF for Equation (It is assumed that the activity coefficients equal 1.) Putting PMFM = VM, the apparent velocity constant of the process, we have See PDF for Equation where e denotes the concentration at equilibrium. Then See PDF for Equation where t is time. The corresponding equation when ions alone enter is See PDF for Equation. where K is the dissociation constant of HA, PA is the permeability of the protoplasm to the ion pair H+ + A-, and Aie denotes the internal concentration of Ai at equilibrium. Putting PAKFM = VA, the apparent velocity constant of the process, we have See PDF for Equation and See PDF for Equation When both ions and molecules of HA enter together we have See PDF for Equation where Si = Mi + Ai and Sie is the value of Si at equilibrium. Then See PDF for Equation VM, VA, and VMA depend on FM and hence on the internal pH value but are independent of the external pH value except as it affects the internal pH value. When the ion pair Na+ + A- penetrates and Nai = BAi, we have See PDF for Equation and See PDF for Equation where P NaA is the permeability of the protoplasm to the ion pair Na+ + A-, Nao and Nai are the external and internal concentrations of Na+, See PDF for Equation, and V Na is the apparent velocity constant of the process. Equations are also given for the penetration of: (1) molecules of HA and the ion pair Na+ + A-, (2) the ion pairs H+ + A- and Na+ + A-, (3) molecules of HA and the ion pairs Na+ + A- and H+ + A-. (4) The penetration of molecules of HA together with those of a weak base ZOH. (5) Exchange of ions of the same sign. When a weak electrolyte HA is the only solute present we cannot decide whether molecules alone or molecules and ions enter by comparing the velocity constants at different pH values, since in both cases they will behave alike, remaining constant if FM is constant and falling off with increase of external pH value if FM falls off. But if a salt (e.g., NaA) is the only substance penetrating the velocity constant will increase with increase of external pH value: if molecules of HA and the ions of a salt NaA. penetrate together the velocity constant may increase or decrease while the internal pH value rises. The initial rate See PDF for Equation (i.e., the rate when Mi = 0 and Ai = 0) falls off with increase of external pH value if HA alone is present and penetrates as molecules or as ions (or in both forms). But if a salt (e.g., NaA) penetrates the initial rate may in some cases decrease and then increase as the external pH value increases. At equilibrium the value of Mi equals that of Mo (no matter whether molecules alone penetrate, or ions alone, or both together). If the total external concentration (So = Mo + Ao) be kept constant a decrease in the external pH value will increase the value of Mo and make a corresponding increase in the rate of entrance and in the value at equilibrium no matter whether molecules alone penetrate, or ions alone, or both together. What is here said of weak acids holds with suitable modifications for weak bases and for amphoteric electrolytes and may also be applied to strong electrolytes.  相似文献   

17.
Some of the factors affecting penetration in living cells may be advantageously studied in models in which the organic salts KG and NaG diffuse from an aqueous solution A, through a non-aqueous layer B (representing the protoplasmic surface) into an aqueous solution C (representing the sap and hence called artificial sap) where they react with CO2 to form KHCO3 and NaHCO3. Their relative proportions in C depend chiefly on the partition coefficients and on the diffusion constants in the non-aqueous layer. But the ratio is also affected by other variables, among which are the following: 1. Temperature, affecting diffusion constants and partition coefficients and altering the thickness of the unstirred layers by changing viscosity. 2. Viscosity (especially in the non-aqueous layers) which depends on temperature and the presence of solutes. 3. Rate of stirring, which affects the thickness of the unstirred layers and the transport of electrolyte in those that are stirred. 4. Shape and surface area of the non-aqueous layer. 5. Surface forces. 6. Reactions occurring at the outer surface such as loss of water by the electrolyte or its molecular association in the non-aqueous phase. The reverse processes will occur at the inner surface and here also combinations with acids or other substances in the "artificial sap" may occur. 7. Outward diffusion from the artificial sap. The outward movement of KHCO3 and NaHCO3 is small compared with the inward movement of KG and NaG when the concentrations are equal. This is because the partition coefficients3 of the bicarbonates are very low as compared with those of NaG and KG. Since CO2 and HCO3 - diffuse into A and combine with KG and NaG the inward movement of potassium and sodium falls off in proportion as the concentration of KG and NaG is lessened. 8. Movement of water into the non-aqueous phase and into the artificial sap. This may have a higher temperature coefficient than the penetration of electrolytes. 9. Variation of the partition coefficients with concentration and pH. Many of these variables may occur in living cells. (It happens that the range of variation in the ratio of potassium to sodium in the models resembles that found in Valonia.)  相似文献   

18.
When 0.1 M NaI is added to the sea water surrounding Valonia iodide appears in the sap, presumably entering as NaI, KI, and HI. As the rate of entrance is not affected by changes in the external pH we conclude that the rate of entrance of HI is negligible in comparison with that of NaI, whose concentration is about 107 times that of HI (the entrance of KI may be neglected for reasons stated). This is in marked contrast with the behavior of sulfide which enters chiefly as H2S. It would seem that permeability to H2S is enormously greater than to Na2S. Similar considerations apply to CO2. In this respect the situation differs greatly from that found with iodide. NaI enters because its activity is greater outside than inside so that no energy need be supplied by the cell. The rate of entrance (i.e. the amount of iodide entering the sap in a given time) is proportional to the external concentration of iodide, or to the external product [N+]o [I-lo, after a certain external concentration of iodide has been reached. At lower concentrations the rate is relatively rapid. The reasons for this are discussed. The rate of passage of NaI through protoplasm is about a million times slower than through water. As the protoplasm is mostly water we may suppose that the delay is due chiefly to the non-aqueous protoplasmic surface layers. It would seem that these must be more than one molecule thick to bring this about. There is no great difference between the rate of entrance in the dark and in the light.  相似文献   

19.
The entrance of strong electrolytes into Valonia is very slow unless the cells are injured. This, together with the very high electrical resistance of the protoplasm, suggests that they may penetrate largely as undissociated molecules formed at the surface of the protoplasm by the collision of ions. Under favorable circumstances KCl may be absorbed to the extent of 3 x 10–8 mols per hour per sq. cm. of surface together with about 0.17 as much NaCl. Other substances which seem to penetrate to some extent are Li, Rb, Br, BrO3, I, IO3, and selenite. Little or no penetration is shown by SCN, ferricyanide, ferrocyanide, formate, salicylate, tungstate, seleniate, NO2, SO3, Sb, glycerophosphate, and many heavy metals and the alkaline earths. In sea water whose specific gravity had been increased by CsCl cells of Valonia floated for over a year and there was little or no penetration of Cs except as the result of injury. The penetration of NH4Cl decreases the specific gravity of the sap and causes the cells to float: under these circumstances they live indefinitely. It is probable that NH3 or NH4OH penetrates and is subsequently changed to NH4Cl. It would seem that if the sea contained a little more ammonia this would be a floating organism.  相似文献   

20.
Direct tests of the cell sap of Nitella show that the protoplasm is normally permeable to Li, Cs, and Sr, and that penetration is more rapid in an unbalanced than in a balanced solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号