首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pang Q  Hays JB 《Plant physiology》1991,95(2):536-543
Removal of cyclobutane pyrimidine dimers (CBPDs) in vivo from the DNA of UV-irradiated eight-leaf seedlings of Arabidopsis thaliana was rapid in the presence of visible light (half-life about 1 hour); removal of CBPDs in the dark, presumably via excision repair, was an order of magnitude slower. Extracts of plants contained significant photolyase in vitro, as assayed by restoration of transforming activity to UV-irradiated Escherichia coli plasmids; activity was maximal from four-leaf to 12-leaf stages. UV-B treatment of seedlings for 6 hours increased photolyase specific activity in extracts twofold. Arabidopsis photolyase was markedly temperature-sensitive, both in vitro (half-life at 30°C about 12 minutes) and in vivo (half-life at 30°C, 30 to 45 minutes). The wavelength dependency of the photoreactivation cross-section showed a broad peak at 375 to 400 nm, and is thus similar to that for maize pollen; it overlaps bacterial and yeast photolyase action spectra.  相似文献   

2.
Sunlight-induced C→T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine (mC) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and mC in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of TmC and mCT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or mC in ACmCG with a flanking G was much slower (t1/2 > 250 h) and rate limiting, while the second deamination was much faster. The observation that CmCG dimers deaminate very slowly but at the same time correlate with C→T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C→T mutations than CC→TT mutations at CmCG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.  相似文献   

3.
The loss of stratospheric ozone and the accompanying increase in solar UV flux have led to concerns regarding decreases in global microbial productivity. Central to understanding this process is determining the types and amounts of DNA damage in microbes caused by solar UV irradiation. While UV irradiation of dormant Bacillus subtilis endospores results mainly in formation of the “spore photoproduct” 5-thyminyl-5,6-dihydrothymine, genetic evidence indicates that an additional DNA photoproduct(s) may be formed in spores exposed to solar UV-B and UV-A radiation (Y. Xue and W. L. Nicholson, Appl. Environ. Microbiol. 62:2221–2227, 1996). We examined the occurrence of double-strand breaks, single-strand breaks, cyclobutane pyrimidine dimers, and apurinic-apyrimidinic sites in spore DNA under several UV irradiation conditions by using enzymatic probes and neutral or alkaline agarose gel electrophoresis. DNA from spores irradiated with artificial 254-nm UV-C radiation accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, while DNA from spores exposed to artificial UV-B radiation (wavelengths, 290 to 310 nm) accumulated only cyclobutane pyrimidine dimers. DNA from spores exposed to full-spectrum sunlight (UV-B and UV-A radiation) accumulated single-strand breaks, double-strand breaks, and cyclobutane pyrimidine dimers, whereas DNA from spores exposed to sunlight from which the UV-B component had been removed with a filter (“UV-A sunlight”) accumulated only single-strand breaks and double-strand breaks. Apurinic-apyrimidinic sites were not detected in spore DNA under any of the irradiation conditions used. Our data indicate that there is a complex spectrum of UV photoproducts in DNA of bacterial spores exposed to solar UV irradiation in the environment.  相似文献   

4.
Tissue culture cells of Drosophila melanogaster were given various doses of ultraviolet light. The results indicate that Drosophila cells do have a dark-repair excision mechanism which is not sensitive to caffeine. Pyrimidine dimers were destroyed by photoreactivating illumination in these cells and this destruction probably represents monomerization of the pyrimidine dimers.  相似文献   

5.
Cyclobutane type pyrimidine dimers are the most common product of UV irradiation of DNA. This potentially lethal damage is reversed by photolyase enzymes, which cleave the cyclobutane ring of the pyrimidine dimer by electron transfer from excited state of the flavin cofactor of the enzyme to the dimer. Several studies have suggested that the energy-wasting revers electron transfer process may be kinetically competitive with a ring-opening. One of the principal factors governing the rates of the splitting reaction is the degree of strain in the cyclobutane ring, which is directly reflected in the enthalpy of the splitting process. Hence, the present work utilizes the MNDO-PM3 method to examine the influence of base composition and stereochemistry on the enthalpy of cleavage of the cyclobutane ring of various pyrimidine dimers.  相似文献   

6.
A novel, on-line derivatization technique has been developed which enables generation of fatty acid methyl ester (FAME) profiles from microorganisms by gas chromatography-mass spectrometry without the need for laborious and time-consuming sample preparation. Microgram amounts of bacterial cells are directly applied to a thin ferromagnetic filament and covered with a single drop of methanolic solution of tetramethylammonium hydroxide. After air drying, the filament is inserted into a special gas chromatograph inlet equipped with a high-frequency coil, thus enabling rapid inductive heating of the ferromagnetic filament. This so-called Curie-point heating technique is shown to produce patterns of bacterial FAMEs which are qualitatively and quantitatively nearly identical to those obtained from extracts of methylated lipids prepared by conventional sample pretreatment methods. Relatively minor differences involve the loss of hydroxy-substituted fatty acids by the pyrolytic approach as well as strongly enhanced signals of FAMEs derived from mycolic acids. This type of pyrolysis enables on-line derivatization and thermal extraction of volatile derivatives for analysis, whereas the residual components remain on a disposable probe (ferromagnetic wire) of a pyrolytic device. The reduced sample size (micrograms instead of milligrams) and the lack of sample preparation requirements open up the possibility of rapid microbiological identification of single colonies (thus overcoming the need for time-consuming subculturing) as well as analysis of FAME profiles directly from complex environmental samples.  相似文献   

7.
Within 12-24 hr after human cells were irradiated with ultraviolet light, approximately 50% of the ultraviolet-induced pyrimidine dimers were lost from the DNA. Pyrimidine dimers were found in the TCA-soluble fraction of ultraviolet-irradiated cells at 24 hr. Excess thymidine, caffeine, or hydroxyurea had no effect on the loss of pyrimidine dimers from the DNA of ultraviolet-irradiated cells.  相似文献   

8.
There is increasing evidence that UVA radiation, which makes up ∼95% of the solar UV light reaching the Earth's surface and is also commonly used for cosmetic purposes, is genotoxic. However, in contrast to UVC and UVB, the mechanisms by which UVA produces various DNA lesions are still unclear. In addition, the relative amounts of various types of UVA lesions and their mutagenic significance are also a subject of debate. Here, we exploit atomic force microscopy (AFM) imaging of individual DNA molecules, alone and in complexes with a suite of DNA repair enzymes and antibodies, to directly quantify UVA damage and reexamine its basic mechanisms at a single-molecule level. By combining the activity of endonuclease IV and T4 endonuclease V on highly purified and UVA-irradiated pUC18 plasmids, we show by direct AFM imaging that UVA produces a significant amount of abasic sites and cyclobutane pyrimidine dimers (CPDs). However, we find that only ∼60% of the T4 endonuclease V-sensitive sites, which are commonly counted as CPDs, are true CPDs; the other 40% are abasic sites. Most importantly, our results obtained by AFM imaging of highly purified native and synthetic DNA using T4 endonuclease V, photolyase, and anti-CPD antibodies strongly suggest that CPDs are produced by UVA directly. Thus, our observations contradict the predominant view that as-yet-unidentified photosensitizers are required to transfer the energy of UVA to DNA to produce CPDs. Our results may help to resolve the long-standing controversy about the origin of UVA-produced CPDs in DNA.  相似文献   

9.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

10.
Pyrimidine Dimers in the DNA of Paramecium aurelia   总被引:1,自引:0,他引:1       下载免费PDF全文
The production and fate of thymine-containing pyrimidine dimers in Paramecium aurelia DNA was investigated in three experimental series: production of dimers by UV irradiation, fate of dimers in the dark, and “loss of photoreactivability of dimers.” It is shown that cyclobutyl dimers are made by UV irradiation of Paramecium DNA in vivo, that because of cytoplasmic absorption the number of dimers made in DNA irradiated in vivo is much lower than in DNA irradiated in vitro, that dimers are lost from animals incubated in the dark after irradiation, and that all the dimers that remain in the animals can be destroyed by photoreactivating illumination. Since mutation induction is photoreactivable, these and previous photoreactivation data suggest that pyrimidine dimers are important in mutation induction in P. aurelia.  相似文献   

11.
Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for TmCG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.  相似文献   

12.
环丁烷嘧啶二聚体累积与水稻UV—B敏感性的关系   总被引:6,自引:0,他引:6  
利用单克隆抗体ELISA ,研究了UV_B对水稻DNA中环丁烷嘧啶二聚体 (CPD)的诱导形成及其光、暗修复 ,并对CPD累积与水稻UV_B敏感性的关系进行了分析。结果表明 ,我国南方的 5个水稻 (OryzasativaL .)品种经13.6kJ·m-2 ·d-1UV_B处理 15d后 ,在株高、生物量、光合作用等方面表现出明显的品种间差异。不同品种水稻的DNA中CPD累积比对照明显增加 ,且敏感品种CPD的累积比抗性品种显著提高。统计分析证实 ,CPD的累积与生物量的抑制呈显著正相关 (r2 =0 .6 2 2 )。UV_B诱导的水稻DNA中CPD的清除以光修复为主 ,不同品种CPD暗修复能力相似 ,而光修复能力存在明显差异。根据以上结果推测 ,不同水稻品种UV_B敏感性与CPD光修复能力的差异有关。  相似文献   

13.
Recently, apoptosis (genetically programmed cell death) induced by UV hasbeen documented in some cell culture models. However, the significance ofapoptosis in UV-induced cytotoxicity and resistance is uncertain. In thisstudy, we investigated the induction of apoptosis in HeLa cells and itsrole in acquired UV-resistance. The membrane receptor Fas was induced toassembly, and its immediate downstream target, caspase-8, was induced byUV in a dose- and time-dependent manner. Caspase-10, another possiblecandidate for forming the death-inducing signaling complex with Fas, wasalso activated in a dose- and time-dependent manner. There was significantactivation of caspase 9, 3 and 2 by UV. The apoptotic pathways appeared tobe normal in acquired UV-resistant HeLa cells. In addition, there was a UVdose-dependent induction of chromatin condensation in both parental andUV-resistant cells. However, resistant cells displayed significant reductionin chromatin condensation at lower doses. Inhibition of caspase-3 activation byspecific inhibitor significantly reduced the chromatin condensation in bothcell types, and unexpectedly, the difference between the two cell lines wascompletely eradicated, suggesting that the caspase-3 pathway plays asignificant role in reducing apoptosis in resistant cells. The resultsindicate that UV induces apoptosis by direct activation of apoptoticproteins in HeLa and resistant cells. Although resistant cells displayedpartial inhibition of UV-induced apoptosis through the caspase-3 pathway,there was no consistent difference in the activation of this and relatedcaspase-9 caspases compared to parental HeLa cells.  相似文献   

14.
15.
16.

Background

Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA) and complete genome sequencing of individual cells.

Methodology/Principal Findings

We describe a pipeline that enables single-cell WGA on hundreds of cells at a time while virtually eliminating non-target DNA from the reactions. We further developed a post-amplification normalization procedure that mitigates extreme variations in sequencing coverage associated with multiple displacement amplification (MDA), and demonstrated that the procedure increased sequencing efficiency and facilitated genome assembly. We report genome recovery as high as 99.6% with reference-guided assembly, and 95% with de novo assembly starting from a single cell. We also analyzed the impact of chimera formation during MDA on de novo assembly, and discuss strategies to minimize the presence of incorrectly joined regions in contigs.

Conclusions/Significance

The methods describe in this paper will be useful for sequencing genomes of individual cells from a variety of samples.  相似文献   

17.
Light-dependent repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidinone dimers (6-4 products) was investigated in an excision repair-deficient Arabidopsis mutant. As previously described, exposure to broad-spectrum lighting was found to greatly enhance the rate of repair of CPDs. We demonstrate that 6-4 products are also efficiently eliminated in a light-dependent manner and that this photoreactivation of 6-4 products occurs independently of the previously described 6-4 product dark repair pathway. The light-dependent repair of both 6-4 products and CPDs occurs in the presence of blue light (435 nm) but not upon exposure to light of longer wavelengths. We also found that high-level expression of the CPD-specific photoreactivating activity in the Arabidopsis seedling requires induction by exposure to light prior to as well as during the period of repair while the 6-4 photoreactivating activity is constitutively expressed. This differential regulation of the photoreactivating activities suggests that the Arabidopsis seedling produces at least two distinct photolyases: one specific for CPDs and the other specific for 6-4 products.  相似文献   

18.
Based on deduced amino-acid sequence similarities to class-I photolyases, the open reading frame ORF90 was identified from the genome sequence of Rhodobacter capsulatus SB1003. Photoreactivation activity is not detectable in an ORF90 deletion mutant of R. capsulatus SB1003. The phenotype of R. capsulatus wild-type cells was restored by plasmid borne ORF90 of R. capsulatus DeltaORF90. Furthermore, we detected an ORF90-related CPD-specific photoreactivation activity in R. capsulatus cell extracts. The results show that the gene product of ORF90 is involved in photoreactivation and encodes a class-I cyclobutane pyrimidine dimer photolyase.  相似文献   

19.
Stomata are natural openings in the plant epidermis responsible for gas exchange between plant interior and environment. They are formed by a pair of guard cells, which are able to close the stomatal pore in response to a number of external factors including light intensity, carbon dioxide concentration, and relative humidity (RH). The stomatal pore is also the main route for pathogen entry into leaves, a crucial step for disease development. Recent studies have unveiled that closure of the pore is effective in minimizing bacterial disease development in Arabidopsis plants; an integral part of plant innate immunity. Previously, we have used epidermal peels to assess stomatal response to live bacteria (Melotto et al. 2006); however maintaining favorable environmental conditions for both plant epidermal peels and bacterial cells has been challenging. Leaf epidermis can be kept alive and healthy with MES buffer (10 mM KCl, 25 mM MES-KOH, pH 6.15) for electrophysiological experiments of guard cells. However, this buffer is not appropriate for obtaining bacterial suspension. On the other hand, bacterial cells can be kept alive in water which is not proper to maintain epidermal peels for long period of times. When an epidermal peel floats on water, the cells in the peel that are exposed to air dry within 4 hours limiting the timing to conduct the experiment. An ideal method for assessing the effect of a particular stimulus on guard cells should present minimal interference to stomatal physiology and to the natural environment of the plant as much as possible. We, therefore, developed a new method to assess stomatal response to live bacteria in which leaf wounding and manipulation is greatly minimized aiming to provide an easily reproducible and reliable stomatal assay. The protocol is based on staining of intact leaf with propidium iodide (PI), incubation of staining leaf with bacterial suspension, and observation of leaves under laser scanning confocal microscope. Finally, this method allows for the observation of the same live leaf sample over extended periods of time using conditions that closely mimic the natural conditions under which plants are attacked by pathogens.  相似文献   

20.
快速准确监测奶牛体细胞数的方法   总被引:1,自引:0,他引:1  
实验通过荧光染色的方法,运用荧光显微术对3个取样点总计39头奶牛的体细胞在不同时间计数,表明吖啶橙染色是一种快速、准确的监测奶牛体细胞数的方法,同时还表明不同的饲养条件及管理会造成牛群健康状况的显著差异,并依据实验结果对改善牛群的健康状况提出了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号