首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

3.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin α2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and “preactivated” myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin α1 was not detectable in skeletal muscle. Laminin α2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin α2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin α chains in early myogenic differentiation, such as laminin α4 and α5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin β1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin α3 was not expressed in uninjured or regenerating muscle, while integrin α6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin α6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin α6 occurred on some newly formed myotubes. Integrin α7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin α7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin α7 negative. No marked difference was observed in integrin α7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin α4 and integrin α6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin α4 and integrin α6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin α2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

4.
5.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin alpha2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and "preactivated" myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin alpha1 was not detectable in skeletal muscle. Laminin alpha2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin alpha2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin alpha chains in early myogenic differentiation, such as laminin alpha4 and alpha5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin beta1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin alpha3 was not expressed in uninjured or regenerating muscle, while integrin alpha6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin alpha6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin alpha6 occurred on some newly formed myotubes. Integrin alpha7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin alpha7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin alpha7 negative. No marked difference was observed in integrin alpha7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin alpha4 and integrin alpha6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin alpha4 and integrin alpha6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin alpha2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

6.
7.
Polesskaya A  Seale P  Rudnicki MA 《Cell》2003,113(7):841-852
The observation that CD45(+) stem cells injected into the circulation participate in muscle regeneration raised the question of whether CD45(+) stem cells resident in muscle play a physiological role during regeneration. We found that CD45(+) cells cultured from uninjured muscle were uniformly nonmyogenic. However, CD45(+) cells purified from regenerating muscle readily gave rise to determined myoblasts. The number of CD45(+) cells in muscle rapidly expanded following injury, and a high proportion entered the cell cycle. Investigation of candidate pathways involved in embryonic myogenesis revealed that Wnt signaling was sufficient to induce the myogenic specification of muscle-derived CD45(+) stem cells. Moreover, injection of the Wnt antagonists sFRP2/3 into regenerating muscle markedly reduced CD45(+) stem cell proliferation and myogenic specification. Our data therefore suggest that mobilization of resident CD45(+) stem cells is an important factor in regeneration after injury and highlight the Wnt pathway as a potential therapeutic target for degenerative neuromuscular disease.  相似文献   

8.
We have previously demonstrated that CD34(+) cells isolated from fetal mouse muscles are an interesting source of myogenic progenitors. In the present work, we pinpoint the tissue location of these CD34(+) cells using cell surface and phenotype markers. In order to identify the myogenic population, we next purified different CD34(+) subsets, determined their expression of relevant lineage-related genes, and analyzed their differentiation capacities in vitro and in vivo. The CD34(+) population comprised a CD31(+)/CD45(-) cell subset exhibiting endothelial characteristics and only capable of forming microvessels in vivo. The CD34(+)/CD31(-)/CD45(-)/Sca1(+) subpopulation, which is restricted to the muscle epimysium, displayed adipogenic differentiation both in vitro and in vivo. CD34(+)/CD31(-)/CD45(-)/Sca1(-) cells, localized in the muscle interstitium, transcribed myogenic genes, but did not display the characteristics of adult satellite cells. These cells were distinct from pericytes and fibroblasts. They were myogenic in vitro, and efficiently contributed to skeletal muscle regeneration in vivo, although their myogenic potential was lower than that of the unfractionated CD34(+) cell population. Our results indicate that angiogenic and adipogenic cells grafted with myogenic cells enhance their contribution to myogenic regeneration, highlighting the fundamental role of the microenvironment on the fate of transplanted cells.  相似文献   

9.
Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.  相似文献   

10.
Fibroblast growth factor 6 (FGF6) is selectively expressed during muscle development and regeneration. We examined its effect on muscle precursor cells (mpc) by forcing stable FGF6 expression in C2C12 cells in vitro. FGF6 produced in genetically engineered mpc was active, inducing strong morphological changes, altering cell adhesion and compromising their ability to differentiate into myotubes. Expression of MyoD and myogenin, but not of Myf5, was abrogated in FGF6 engineered mpc. These effects were reversed by FGF inhibitors. Ectopic expression of MyoD also restored fiber formation indicating that FGF6 interferes with the myogenic differentiation pathway upstream of MyoD. We also report that in the presence of FGF6, the minor (0.5-2%) subpopulation of cells actively excluding Hoechst 33342 in a verapamil-dependent manner (SP phenotype) was increased to 15-20% and the expression of the mdr1a gene (but not mdr1b) was upregulated by 400-fold. Our data establish a previously undescribed link between FGF6--a muscle specific growth factor--and a multidrug resistance gene expressed in stem cells, and suggest a role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle.  相似文献   

11.
Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell-mediated therapies.  相似文献   

12.
Koch AJ  Holaska JM 《PloS one》2012,7(5):e37262
Emerin is an integral membrane protein of the inner nuclear membrane. Mutations in emerin cause X-linked Emery-Dreifuss muscular dystrophy (EDMD), a disease characterized by skeletal muscle wasting and dilated cardiomyopathy. Current evidence suggests the muscle wasting phenotype of EDMD is caused by defective myogenic progenitor cell differentiation and impaired muscle regeneration. We obtained genome-wide expression data for both mRNA and micro-RNA (miRNA) in wildtype and emerin-null mouse myogenic progenitor cells. We report here that emerin-null myogenic progenitors exhibit differential expression of multiple signaling pathway components required for normal muscle development and regeneration. Components of the Wnt, IGF-1, TGF-β, and Notch signaling pathways are misexpressed in emerin-null myogenic progenitors at both the mRNA and protein levels. We also report significant perturbations in the expression and activation of p38/Mapk14 in emerin-null myogenic progenitors, showing that perturbed expression of Wnt, IGF-1, TGF-β, and Notch signaling components disrupts normal downstream myogenic signaling in these cells. Collectively, these data support the hypothesis that emerin is essential for proper myogenic signaling in myogenic progenitors, which is necessary for myogenic differentiation and muscle regeneration.  相似文献   

13.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

14.
Thymic myoid cells share structural and behavioural features with cells of the skeletal muscle lineage: they express regulatory genes and contractile proteins, and they can form myofibers in culture. Historically, those features suggested that myoid cells could be precursors for muscle repair in addition to the satellite cells in muscle that are typically designated as the only muscle precursors. Muscles of the mutant mdx dystrophic mouse strain have a large demand for precursors, which is greatest at a young age. In the present study, immunostaining for troponin T was used to localize myoid cells. We tested the hypothesis that the myoid cell population changes when there is a demand for muscle precursors and that these changes would be anticipated if myoid cells have a role as myogenic precursors or stem cells in muscle. Chronic demands for muscle precursors in mdx dystrophic mice were accompanied by lower myoid cell density in comparison with density in two normal strains (C57BL10/ScSn and Swiss Webster). Acute demand for precursors was accompanied by a sharp decline in thymic myoid cell density within 2 days after a crush injury to one tibialis anterior muscle in normal but not dystrophic animals. To standardize the developmental age of the thymus, density was determined in all animals at 28 days of age. Given the current interest in nonmuscle sources of myogenic stem cells, these data suggest that changes in the density of thymic myoid cells may accompany acute and chronic demands for muscle precursors. Further experiments are required to determine whether thymic myoid cells are participants in distant muscle cell proliferation, new fiber formation, or the establishment of new stem cells in regenerated muscle.  相似文献   

15.
Deficits in skeletal muscle function exist during aging and muscular dystrophy, and suboptimal function has been related to factors such as atrophy, excessive inflammation and fibrosis. Ineffective muscle regeneration underlies each condition and has been attributed to a deficit in myogenic potential of resident stem cells or satellite cells. In addition to reduced myogenic activity, satellite cells may also lose the ability to communicate with vascular cells for coordination of myogenesis and angiogenesis and restoration of proper muscle function. Objectives of the current study were to determine the angiogenic-promoting capacity of satellite cells from two states characterized by dysfunctional skeletal muscle repair, aging and Duchenne muscular dystrophy. An in vitro culture model composed of satellite cells or their conditioned media and rat adipose tissue microvascular fragments (MVF) was used to examine this relationship. Microvascular fragments cultured in the presence of rat satellite cells from adult muscle donors (9–12 month of age) exhibited greater indices of angiogenesis (endothelial cell sprouting, tubule formation and extensive branching) than MVF co-cultured with satellite cells from aged muscle donors (24 month of age). We sought to determine if the differential degree of angiogenesis we observed in the co-culture setting was due to soluble factors produced by each satellite cell age group. Similar to the co-culture experiment, conditioned media produced by adult satellite cells promoted greater angiogenesis than that of aged satellite cells. Next, we examined differences in angiogenesis-stimulating ability of satellite cells from 12 mo old MDX mice or age-matched wild-type mice. A reduction in angiogenesis activity of media conditioned by satellite cells from dystrophic muscle was observed as compared to healthy muscle. Finally, we found reduced gene expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in both aged and dystrophic satellite cells compared to their adult and normal counterparts, respectively. These results indicate that functional deficits in satellite cell activities during aging and diseased muscle may extend to their ability to communicate with other cells in their environment, in this case cells involved in angiogenesis.  相似文献   

16.
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration.  相似文献   

17.

Background

Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.

Methodology/Principal Findings

Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1) is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with α-sarcoglycan knock-out mice –a mouse model of muscular dystrophy– or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.

Conclusions/Significance

Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major muscular diseases such as cachexia or muscular dystrophy.  相似文献   

18.
A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.  相似文献   

19.
Recent studies have shown that bone marrow (BM) cells, including the BM side population (BM-SP) cells that enrich hematopoietic stem cells (HSCs), are incorporated into skeletal muscle during regeneration, but it is not clear how and what kinds of BM cells contribute to muscle fiber regeneration. We found that a large number of SP cells migrated from BM to muscles following injury in BM-transplanted mice. These BM-derived SP cells in regenerating muscles expressed different surface markers from those of HSCs and could not reconstitute the mouse blood system. BM-derived SP/Mac-1(low) cells increased in number in regenerating muscles following injury. Importantly, our co-culture studies with activated satellite cells revealed that this fraction carried significant potential for myogenic differentiation. By contrast, mature inflammatory (Mac-1(high)) cells showed negligible myogenic activities. Further, these BM-derived SP/Mac-1(low) cells gave rise to mononucleate myocytes, indicating that their myogenesis was not caused by stochastic fusion with host myogenic cells, although they required cell-to-cell contact with myogenic cells for muscle differentiation. Taken together, our data suggest that neither HSCs nor mature inflammatory cells, but Mac-1(low) early myeloid cells in the BM-derived SP fraction, play an important role in regenerating skeletal muscles.  相似文献   

20.
Duchenne muscular dystrophy (DMD) caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs) are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD). However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号