首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors submit the results of a study of the effect of rhytmic alternation of protein depletion and repletion on the quantitative and qualitative proportion of haemoglobin in the rat. The results show that four weeks' depletion caused significant changes in the studied parameters, but that two weeks' repletion restored them to normal. The organism's responses to repeated depletion-repletion states were heterogeneous as regards the size, quality and trend of the changes, indicating that the organism's defences against depletion can be influenced by repeated administration in the form of a kind of "training". The mechanism of action of the above changes is at present still unknown.  相似文献   

2.
Uetz P  Finley RL 《FEBS letters》2005,579(8):1821-1827
A system-level understanding of any biological process requires a map of the relationships among the various molecules involved. Technologies to detect and predict protein interactions have begun to produce very large maps of protein interactions, some including most of an organism's proteins. These maps can be used to study how proteins work together to form molecular machines and regulatory pathways. They also provide a framework for constructing predictive models of how information and energy flow through biological networks. In many respects, protein interaction maps are an entrée into systems biology.  相似文献   

3.
In this paper, we propose a communication model of evolution and investigate its information-theoretic bounds. The process of evolution is modeled as the retransmission of information over a protein communication channel, where the transmitted message is the organism's proteome encoded in the DNA. We compute the capacity and the rate distortion functions of the protein communication system for the three domains of life: Archaea, Bacteria, and Eukaryotes. The tradeoff between the transmission rate and the distortion in noisy protein communication channels is analyzed. As expected, comparison between the optimal transmission rate and the channel capacity indicates that the biological fidelity does not reach the Shannon optimal distortion. However, the relationship between the channel capacity and rate distortion achieved for different biological domains provides tremendous insight into the dynamics of the evolutionary processes of the three domains of life. We rely on these results to provide a model of genome sequence evolution based on the two major evolutionary driving forces: mutations and unequal crossovers.  相似文献   

4.
Recent advances have provided a working interactome map for the human malaria parasite Plasmodium falciparum. The aforementioned map, generated from genome-scale analyses, has provided a basis for proteomic studies of the parasite; however, such large-scale approaches commonly suffer from undersampling and lack of coverage. The current map bears no exception, containing only one-quarter of the organism's proteins. Inspired by the needs of the current map and the wealth of bioinformatics data, we assembled a map of 19 979 interactions among 2321 proteins in P. falciparum. The resultant map was generated by computationally inferring protein-protein interactions from evolutionarily conserved protein interactions, underlying domain interactions, and experimental observations. To compile this information into a repository of meaningful data, we assessed interaction quality by applying a logistic regression method, which correlated the presence of an interaction with relevant cellular parameters. Interestingly, it was found that sub-networks from different sources are quite dissimilar in their topologies and overlap to a very small extent. Applying Markov clustering, we observe a typical cluster composition, featuring common cellular functions that were previously reported absent, making this map a valuable resource for understanding the biology of this organism.  相似文献   

5.
The effect of the depletion of calcium on the structure and thermal stability of the D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli was studied by fluorescence spectroscopy and Fourier-transform infrared spectroscopy. The calcium-depleted protein (GGBP-Ca) was also studied in the presence of glucose (GGBP-Ca/Glc). The results show that calcium depletion has a small effect on the secondary structure of GGBP, and, in particular it affects a population of alpha-helices with a low exposure to solvent. Alternatively, glucose-binding to GGBP-Ca eliminates the effect induced by calcium depletion by restoring a secondary structure similar to that of the native protein. In addition, the infrared and fluorescence data obtained reveal that calcium depletion markedly reduces the thermal stability of GGBP. In particular, the spectroscopic experiments show that the depletion of calcium mainly affects the stability of the C-terminal domain of the protein. However, the binding of glucose restores the thermal stability of GGBP-Ca. The thermostability of GGBP and GGBP-Ca was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results. New insights into the role of calcium in the thermal stability of GGBP contribute to a better understanding of the protein function and constitute important information for the development of biotechnological applications of this protein. Mutations and/or labelling of amino acid residues located in the protein C-terminal domain may affect the stability of the whole protein structure.  相似文献   

6.
There are conflicting data in the literature regarding the role of epidermal Langerhans cells (LC) in promoting skin immune responses. On one hand, LC can be extremely potent APCs in vitro, and are thought to be involved in contact hypersensitivity (CHS). On the other hand, it seems counterintuitive that a cell type continually exposed to pathogens at the organism's barrier surfaces should readily trigger potent T cell responses. Indeed, LC depletion in one model led to enhanced contact hypersensitivity, suggesting they play a negative regulatory role. However, apparently similar LC depletion models did not show enhanced CHS, and in one case showed reduced CHS. In this study we found that acute depletion of mouse LC reduced CHS, but the timing of toxin administration was critical: toxin administration 3 days before priming did not impair CHS, whereas toxin administration 1 day before priming did. We also show that LC elimination reduced the T cell response to epicutaneous immunization with OVA protein Ag. However, this reduction was only observed when OVA was applied on the flank skin, and not on the ear. Additionally, peptide immunization was not blocked by depletion, regardless of the site. Finally we show that conditions which eliminate epidermal LC but spare other Langerin(+) DC do not impair the epicutaneous immunization response to OVA. Overall, our results reconcile previous conflicting data in the literature, and suggest that Langerin(+) cells do promote T cell responses to skin Ags, but only under defined conditions.  相似文献   

7.
Escherichia coli multidrug resistance protein E (EmrE) is an integral membrane protein spanning the inner membrane of Escherichia coli that is responsible for this organism's resistance to a variety of lipophilic cations such as quaternary ammonium compounds (QACs) and interchelating dyes. EmrE is a 12-kDa protein of four transmembrane helices considered to be functional as a multimer. It is an efflux transporter that can bind and transport cytoplasmic QACs into the periplasm using the energy of the proton gradient across the inner membrane. Isothermal titration calorimetry provides information about the stoichiometry and thermodynamic properties of protein-ligand interactions, and can be used to monitor the binding of QACs to EmrE in different membrane mimetic environments. In this study the ligand binding to EmrE solubilized in dodecyl maltoside, sodium dodecyl sulfate and reconstituted into small unilamellar vesicles is examined by isothermal titration calorimetry. The binding stoichiometry of EmrE to drug was found to be 1:1, demonstrating that oligomerization of EmrE is not necessary for binding to drug. The binding of EmrE to drug was observed with the dissociation constant (K(D)) in the micromolar range for each of the drugs in any of the membrane mimetic environments. Thermodynamic properties demonstrated this interaction to be enthalpy-driven with similar enthalpies of 8-12 kcal/mol for each of the drugs in any of the membrane mimetics.  相似文献   

8.
The chemical senses (taste, smell, and chemical irritation) convey information from the external to the internal environment. This information influences an organism's quality of life, safety, reproductive function, and, to the present point, nutritional status. To illustrate this role, the effects of chemosensory stimulation on food choice, gastrointestinal function, and energy balance will be briefly reviewed. Each role is achieved, in part, by the chemosensory cue initiating anticipatory responses for an impending homeostatic challenge, a meal.  相似文献   

9.
Aging is considered to be a progressive decline in an organism's functioning over time and is almost universal throughout the living world. Currently, many different aging mechanisms have been reported at all levels of biological organization, with a variety of biochemical, metabolic, and genetic pathways involved. Some of these mechanisms are common across species, and others work different, but each of them is constitutive. This review describes the common characteristics of the aging processes, which are consistent changes over time that involve either the accumulation or depletion of particular system components. These accumulations and depletions may result from imperfect homeostasis, which is the incomplete compensation of a particular biological process with another process evolved to compensate it. In accordance with disposable-soma theory, this imperfection in homeostasis may originate as a function of cell differentiation as early as in yeasts. It may result either from antagonistic pleiotropy mechanisms, or be simply negligible as a subject of natural selection if an adverse effect of the accumulation phenotypically manifests in organism's post-reproductive age. If this phenomenon holds true for many different functions it would lead to the occurrence of a wide variety of aging mechanisms, some of which are common among species, while others unique, because aging is the inherent property of most biological processes that have not yet evolved to be perfectly in balance. Examples of imperfect homeostasis mechanisms of aging, the ways in which germ line escapes from them, and the possibilities of anti-aging treatment are discussed in this review.  相似文献   

10.
Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3(rd) of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system.  相似文献   

11.
The principal feature of killing of Candida albicans and other pathogenic fungi by the catonic protein Histatin 5 (Hst 5) is loss of cytoplasmic small molecules and ions, including ATP and K(+), which can be blocked by the anion channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. We constructed C. albicans strains expressing one, two, or three copies of the TRK1 gene in order to investigate possible roles of Trk1p (the organism's principal K(+) transporter) in the actions of Hst 5. All measured parameters (Hst 5 killing, Hst 5-stimulated ATP efflux, normal Trk1p-mediated K(+) ((86)Rb(+)) influx, and Trk1p-mediated chloride conductance) were similarly reduced (5-7-fold) by removal of a single copy of the TRK1 gene from this diploid organism and were fully restored by complementation of the missing allele. A TRK1 overexpression strain of C. albicans, constructed by integrating an additional TRK1 gene into wild-type cells, demonstrated cytoplasmic sequestration of Trk1 protein, along with somewhat diminished toxicity of Hst 5. These results could be produced either by depletion of intracellular free Hst 5 due to sequestered binding, or to cooperativity in Hst 5-protein interactions at the plasma membrane. Furthermore, Trk1p-mediated chloride conductance was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in all of the tested strains, strongly suggesting that the TRK1 protein provides the essential pathway for ATP loss and is the critical effector for Hst 5 toxicity in C. albicans.  相似文献   

12.
McGee JE  Bejcek BE 《Plasmid》2001,46(1):60-64
Several plasmids from Pasteurella multocida have been shown to carry antibiotic resistance genes but no other genes possibly related to the organism's pathogenesis. We report here that sequence from the plasmid pLEM from a fowl isolate of P. multocida, strain 1059, contained one open reading frame that had significant identity with a predicted protein from pVT745, a plasmid that was isolated from a human oral isolate of Actinobacillus actinomycetemcomitans. This predicted protein had significant homology at the amino acid level to cation transport proteins.  相似文献   

13.
Membrane protein structural biology is a frontier area of modern biomedical research. Twenty to thirty-five percent of the proteins encoded by an organism's genome are integral membrane proteins. Integral membrane proteins, such as channels, transporters, and receptors, are critical components of many fundamental biological processes. Also, many integral membrane proteins are important in biomedical and biotechnological applications; the majority of drug targets are integral membrane proteins. The sharp increase in the number of membrane protein structures over the last several years gives some indication that this field is poised for rather explosive growth as more and more investigators take on membrane protein projects. The purpose of this brief practical review was to take a snapshot of a field at the onset of its likely exponential growth phase, and to lay out the methods that have worked to date for obtaining membrane protein crystals suitable for structure determination by X-ray crystallography. Many of the successful experimental methods are identical to those used for soluble proteins. The major difference, and a non-trivial difference, is the necessity for inclusion of detergents above the critical micelle concentration in the purified membrane protein solution.  相似文献   

14.

Background  

In general, the length of a protein sequence is determined by its function and the wide variance in the lengths of an organism's proteins reflects the diversity of specific functional roles for these proteins. However, additional evolutionary forces that affect the length of a protein may be revealed by studying the length distributions of proteins evolving under weaker functional constraints.  相似文献   

15.
Porphyromonas gingivalis, one of the etiological agents of periodontitis, can be killed by red light in the presence of toluidine blue. The purpose of this study was to determine whether this light-induced killing was accompanied by changes in the fluidity of the organism's cytoplasmic membrane. A suspension of the organism was exposed to red light in the presence of toluidine blue, and the membrane fluidity was monitored spectrofluorimetrically by using the membrane probe trimethylammonium diphenyl hexatriene. The fluidity of the organism's cytoplasmic membrane was found to decrease significantly during lethal photosensitization, and this was accompanied by membrane condensation and vacuolation of the cells. Although changes in membrane fluidity are often attributable to lipid peroxidation, malonaldehyde (a product of lipid peroxidation) was not detectable. The disruption of membrane functions associated with a decreased membrane fluidity may contribute to the bactericidal effect of light-activated toluidine blue. Received: 12 October 2001 / Accepted: 7 December 2001  相似文献   

16.
From its initial colonization to causation of disease, Streptococcus pneumoniae has evolved strategies to cope with a number of stressful in vivo environmental conditions. In order to analyze a global view of this organism's response to heat shock, we established a 2-D electrophoresis proteome map of the S. pneumoniae D39 soluble proteins under in vitro culture conditions and performed the comparative proteome analysis to a 37 to 42 degrees temperature up-shift in S. pneumoniae. When the temperature of an exponentially growing S. pneumoniae D39 culture was raised to 42 degrees , the expression level of 25 proteins showed changes when compared to the control. Among these 25 proteins, 12 were identified by MALDI-TOF and LC-coupled ESI MS/MS. The identified proteins were shown to be involved in the general stress response, energy metabolism, nucleotide biosynthesis pathways, and purine metabolism. These results provide clues for understanding the mechanism of adaptation to heat shock by S. pneumoniae and may facilitate the assessment of a possible role for these proteins in the physiology and pathogenesis of this pathogen.  相似文献   

17.

Background  

Establishing the relationship between an organism's genome sequence and its phenotype is a fundamental challenge that remains largely unsolved. Accurately predicting microbial phenotypes solely based on genomic features will allow us to infer relevant phenotypic characteristics when the availability of a genome sequence precedes experimental characterization, a scenario that is favored by the advent of novel high-throughput and single cell sequencing techniques.  相似文献   

18.
The effect of protein depletion and refeeding with a normal diet on calpain activity was examined in mouse kidney soluble homogenate. In terms of units per gram of protein, it increased 2.9 times with depletion and decreased upon refeeding. After a DEAE-Sephacel chromatography, the homogenate yielded three enzymatic activities. Their sum, assessed as total calpain activity, was higher than the activity measured before fractionation and did not appreciably change during protein depletion and refeeding. Because the proportion of total activity displayed by the complete homogenate increased with depletion and decreased with refeeding, a low calpastatin content in depleted kidney was envisaged. This was confirmed by direct estimations: depleted kidney had 6 times less calpastatin compared to both normal and 16 h refed tissue. We concluded that a decrease in calpastatin content contributes to an increased calpain activity related to degradable protein in protein depleted kidney. In view of this, it seems not unlikely that the in vivo rate of protein breakdown depicted by kidney during protein depletion and refeeding is in part effected through modulation of the calpain proteolytic system. (Mol Cell Biochem 166: 95-99, 1997)  相似文献   

19.
Hudson ME  Snyder M 《BioTechniques》2006,41(6):673, 675, 677 passim
With the number of organisms whose genomes have been sequenced, a vast amount of information concerning the genetic structure of an organism's genome has been collected. However, effective experiment means to study how this information is accessed have only recently been developed. In this review, three basic methods for identifying regions of protein-DNA interaction will be introduced. The first two, chromatin immunoprecipitation (ChIP)-chip and ChIP-PET (for paired-end ditag), rely on the enrichment provided by chromosomal immunoprecipitation to interrogate the genomic sequence for the interaction sites of a protein of interest. In contrast, protein microarrays allow the identification of DNA binding protein that interacts with a DNA sequence of interest. These complementary methods of exploring protein-DNA interactions will increase our fundamental knowledge of how the information contained within the genome sequence is accessed and processed.  相似文献   

20.
In this study, for the first time, a comprehensive two-dimensional (2D) liquid-phase separation system, coupling strong cation exchange chromatography (SCX) to reversed-phase high performance liquid chromatography (RPLC), instead of specificity depletion method, was developed at the intact protein level for depletion of high-abundance proteins from rat liver. Proteins were prefractionated by SCX in the first dimensional separation, followed by RPLC with high resolution separation. UV absorption intensity was used to differentiate high-abundance proteins. The proteins with the absorbance intensity above 0.1 AU were defined as high abundance proteins and depleted. After removal of high-abundance proteins; other proteins were pooled, digested, and subsequently separated by capillary liquid chromatography coupled with MALDI-TOF/TOF mass spectrometry analysis. The high efficiency of the strategy was demonstrated by analyzing the soluble protein extracted from rat liver tissue. In total, 77 high-abundance proteins were depleted in one experiment flow. The ratio of depleted content of high-abundance proteins to that of total proteins was about 34.5%. In total, 1530 proteins were identified using the depletion strategy. Quantitative estimation of high-abundance proteins through liquid chromatography combined with UV absorption spectra was achieved. On the basis of the reproducible experimental results, a rapid and high-throughput depletion protocol was put forward. Along with depletion of the most (79.1%) high-abundance proteins and the separation of digested peptides, the total separation time could be less than 30 h. This strategy has no bias for depleting high-abundance proteins and enhances the number of identified proteins; therefore, it can be widely used in the global proteins analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号