首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urotensin II is a cyclic neuropeptide recently shown to play a role via its receptor GPR14 in regulating vascular tone in the mammalian cardiovascular system. The existence of GPR14 in rat heart has been validated by ligand binding assay and RT-PCR. In the present study, we investigated the cellular distribution of GPR14 protein in rat heart by using immunohistochemistry and confocal microscopic immunofluorescence double staining with antipeptide polyclonal antibodies against GPR14 and cell type markers for myocytes and endothelial cells. The direct effect of urotensin II on left ventricular contractility was further evaluated in isolated left ventricular papillary muscles of the rat. In paraffin-embedded heart sections, positive immunohistochemical staining was observed in the left ventricle but not in the right ventricle and atria. Immunofluorescence double staining revealed the cardiac myocyte as the only cell type expressing GPR14 protein in frozen heart sections as well as in isolated cardiac myocytes. There was no visible signal for GPR14 in intramyocardial coronary arteries and capillaries. The existence of GPR14 protein in rat heart was further validated by immunoprecipitation and Western blot analysis. In isolated rat left ventricular papillary muscle preparations, urotensin II induced an increase in active contractile force. GPR14 mRNA was also detected in rat heart by RT-PCR. These data provide the first direct evidence for the cellular localization of GPR14 receptor protein and a positive inotropic effect of urotensin II in normal rat heart.  相似文献   

2.
We reported recently that inhibition of neuronal reuptake of norepinephrine (NE) by desipramine prevented the reduction of sympathetic neurotransmitters in the failing right ventricle of right heart failure animals. In this study, we studied whether desipramine also reduced the sympathetic neurotransmitter loss in animals with left heart failure induced by rapid ventricular pacing (225 beats/min) or after chronic NE infusion (0.5 microg. kg(-1). min(-1)). Desipramine was given to the animals for 8 wk beginning with rapid ventricular pacing or NE infusion. Animals receiving no desipramine were studied as controls. We measured myocardial NE content, NE uptake activity, and sympathetic NE, tyrosine hydroxylase, and neuropeptide Y profiles by histofluorescence and immunocytochemical techniques. Effects of desipramine on NE uptake inhibition were evidenced by potentiation of the pressor response to exogenous NE and reduction of myocardial NE uptake activity. Desipramine treatment had no effect in sham or saline control animals but attenuated the reduction of sympathetic neurotransmitter profiles in the left ventricles of animals with rapid cardiac pacing and NE infusion. In contrast, the panneuronal marker protein gene product 9.5 profile was not affected by either rapid pacing or NE infusion, nor was it changed by desipramine treatment in the heart failure animals. The study confirms that excess NE contributes to the reduction of cardiac sympathetic neurotransmitters in heart failure. In addition, it shows that the anatomic integrity of the sympathetic nerves is relatively intact and that the neuronal damaging effect of NE involves the uptake of NE or its metabolites into the sympathetic nerves.  相似文献   

3.
The synthetic growth hormone (GH) secretagogue hexarelin has important cardiac effects, that include a reduction of dysfunction in ischemic-reperfused hearts from GH-deficient rats after a chronic treatment and an increase of ejection fraction in acutely treated men. To investigate the mechanisms of its cardiac activity, we studied the effects of hexarelin (1-10 microM) on contractility of rat papillary muscles. We observed, in hexarelin treated papillary muscles, an improved recovery of contractility after anoxia. Hexarelin induced time- and frequency-dependent inotropic effects on papillary muscle. These effects were a transient increase in contractile force, abolished by propranolol (0.2 microM), followed by a reduction at low (60-240/min), but not at high (400-600/min) beating frequencies. The typical negative force-frequency relationship present in rat papillary muscles was therefore modified, and a minor increase in diastolic tension occurred after a sudden increase in stimulus frequency. Blockade of NO synthesis with 1 mM L-NAME, partially altered the response to hexarelin. MK-677 (1 microM), a non peptidyl GH secretagogue, reduced contractility, but did not alter the force-frequency relationship. The remaining effects of hexarelin were absent in papillary muscles pre-treated with indomethacin (1 microM), or after removal of endocardial endothelium with 0.5% triton X-100. The release of the prostacyclin metabolite 6-keto-PGF1alpha was increased during reoxygenation after a period of anoxia in hexarelin treated papillary muscles. Hexarelin had no significant effect on calcium transients and on I(Ca) measured in isolated ventricular cells. These findings suggest that the effects of hexarelin are mainly due to endothelium-released PGI2.  相似文献   

4.
Sympathetic denervation is frequently observed in heart disease. To investigate the linkage of sympathetic denervation and cardiac arrhythmia, we developed a rat model of chemical sympathectomy by subcutaneous injections of 6-hydroxydopamine (6-OHDA). Cardiac sympathetic innervation was visualized by means of a glyoxylic catecholaminergic histofluorescence method. Transient outward current (Ito) of ventricular myocytes was recorded with the whole-cell configuration of the patch clamp technique. We observed that sympathectomy (i) decreased cardiac sympathetic nerve density and norepinephrine level, (ii) reduced the protein expression of Kv4.2, Kv1.4, and Kv channel-interacting protein 2 (KChIP2), (iii) decreased current densities and delayed activation of Ito channels, (iv) reduced the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP response element-binding protein (CREB), and (v) increased the severity of ventricular fibrillation induced by rapid pacing. Three weeks after 6-OHDA injections, which allowed time for sympathetic regeneration, we found cardiac sympathetic nerve density, norepinephrine levels, expression levels of Kv4.2 and KChIP2 proteins, and I(to) densities were partially normalized and ventricular fibrillation severity was decreased. We conclude that chemical sympathectomy downregulates the expression of selective Kv channel subunits and decreases myocardial I(to) channel activities, contributing to the elevated susceptibility to ventricular fibrillation.  相似文献   

5.
The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.  相似文献   

6.
Angiotensin II and norepinephrine (NE) have been implicated in the neurohumoral response to pressure overload and the development of left ventricular hypertrophy. The purpose of this study was to determine the temporal sequence for activation of the renin-angiotensin and sympathetic nervous systems in the rat after 3-60 days of pressure overload induced by aortic constriction. Initially on pressure overload, there was transient activation of the systemic renin-angiotensin system coinciding with the appearance of left ventricular hypertrophy (day 3). At day 10, there was a marked increase in AT(1) receptor density in the left ventricle, increased plasma NE concentration, and elevated cardiac epinephrine content. Moreover, the inotropic response to isoproterenol was reduced in the isolated, perfused heart at 10 days of pressure overload. The affinity of the beta(2)-adrenergic receptor in the left ventricle was decreased at 60 days. Despite these alterations, there was no decline in resting left ventricular function, beta-adrenergic receptor density, or the relative distribution of beta(1)- and beta(2)-receptor sites in the left ventricle over 60 days of pressure overload. Thus activation of the renin-angiotensin system is an early response to pressure overload and may contribute to the initial development of cardiac hypertrophy and sympathetic activation in the compensated heart.  相似文献   

7.
The balance between norepinephrine (NE) synthesis, release, and reuptake is disrupted after acute myocardial infarction, resulting in elevated extracellular NE. Stimulation of sympathetic neurons in vitro increases NE synthesis and the synthetic enzyme tyrosine hydroxylase (TH) to a greater extent than it increases NE reuptake and the NE transporter (NET), which removes NE from the extracellular space. We used TGR(ASrAOGEN) transgenic rats, which lack postinfarct sympathetic hyperactivity, to test the hypothesis that increased cardiac sympathetic nerve activity accounts for the imbalance in TH and NET expression in these neurons after myocardial infarction. TH and NET mRNA levels were identical in the stellate ganglia of unoperated TGR(ASrAOGEN) rats compared with Sprague Dawley (SD) controls, but the threefold increase in TH and twofold increase in NET mRNA seen in the stellate ganglia of SD rats 1 wk after ischemia-reperfusion was absent in TGR(ASrAOGEN) rats. Similarly, the increase in TH and NET protein observed in the base of the SD ventricle was absent in the base of the TGR (ASrAOGEN) ventricle. Neuronal TH content was depleted in the left ventricle of both genotypes, whereas NET was unchanged. Basal heart rate and cardiac function were similar in both genotypes, but TGR(ASrAOGEN) hearts were more sensitive to the beta-agonist dobutamine. Tyramine-induced release of endogenous NE generated similar changes in ventricular pressure and contractility in both genotypes, but postinfarct relaxation was enhanced in TGR(ASrAOGEN) hearts. These data support the hypothesis that postinfarct sympathetic hyperactivity is the major stimulus increasing TH and NET expression in cardiac neurons.  相似文献   

8.
Comparison of postmortem performed experimental cardiac ruptures with post-infarction lesions reveals uniformity of their localization. The ruptures are found to occur at places of a sharp change in the relief of the cardiac internal surface. These areas should be considered as concentrators of strain, promoting cardiac ruptures. In the left ventricle six concentrators of strain are revealed. They are: the place where the anterior part of the interventricular septum passes into the anterior wall of the left ventricle, the right edge of the papillary muscle, the left edge of the anterior papillary muscle, the left edge of the posterior papillary muscle, the right edge of the posterior papillary muscle, the place where the posterior part of the interventricular septum passes into the posterior wall of the left ventricle. Frequency of the experimental ruptures of the interventricular septum, under loading of the left ventricle, is demonstrated to depend on pressure in the right cardiac part.  相似文献   

9.
OBJECTIVEs: Bone remodeling has recently been revealed to be under sympathetic nerve control. The role of the sympathetic nerve system is not clearly understood. The present study aim to explore the effect of chemical sympathectomy and stress on bone remodeling in adult rats. METHODS: 24 twelve-month-old Wistar rats were divided into three group (sympathectomy, stress and control). The sympathectomy and stress group rats were administered 6-hydroxydopamine (150?mg/kg each day) and saline (1?ml/kg each day) intraperitoneal respectively for one week and exposed to stress procedure for another three weeks. The stress procedure was mild, unpredictable footshock, administered for one hour once daily. Analysis of serum chemistry, microcomputed tomography, dual energy X-ray absorptiometry, biomechanical testing and bone histomorphometry were employed. RESULTS: The stress group rats showed increased bone resorption in contrast to the sympathectomy and control group rats. The serum level of calcium and phosphorus cations and norepinephrine were enhanced, the cancellous bone volume and bone mineral density were reduced, bone mechanical property such as strength, ductility and toughness were weakened, the osteoclast counts and osteoclast surfaces were increased and the bone formatin rate were decreased significantly in the stress group rats in contrast to the other two groups rats. There was no significant difference of bone remodeling between the sympathectomy group and control group rats. CONCULSION: Our study showed stress-increased sympathetic nerve system activity enhanced bone resorption while chemical sympathectomy inhibited bone resorption under stress. We postulate sympathetic neurotransmitter and neuropepitide may play a role in regulating bone remodeling.  相似文献   

10.
The effects of interleukin 1beta administration on the thymus of adult and old rats were studied in order to study the interactions between the nervous and immune systems and to confirm the important role played by catecholaminergic nerve fibres (CNF) in the regulation of thymic functions. Moreover, chemical sympathectomy was performed in a group of rats to study the effects on thymus of the destruction of the majority of CNF. Our results indicate that thymic stimulation (performed by means of interleukin 1beta) induces substantial changes in the fresh weight of the whole thymus, as well as in the thymic microenvironment, thymic nerve fibres, CNF, neuropeptide Y (NPY)-like positive nerve fibres and total amount of both proteins and norepinephrine in rat thymic tissue homogenates. The majority of CNF are destroyed after chemical sympathectomy with 6-OH-Dopamine (DA) and remain unchanged after treatment with interleukin 1beta.  相似文献   

11.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

12.
Mitochondrial nitric oxide (NO) production was assayed in rats submitted to hypobaric hypoxia and in normoxic controls (53.8 and 101.3 kPa air pressure, respectively). Heart mitochondria from young normoxic animals produced 0.62 and 0.37 nmol NO.min(-1).mg protein(-1) in metabolic states 4 and 3, respectively. This production accounts for a release to the cytosol of 29 nmol NO.min(-1).g heart(-1) and for 55% of the NO generation. The mitochondrial NO synthase (mtNOS) activity measured in submitochondrial membranes at pH 7.4 was 0.69 nmol NO.min(-1).mg protein(-1). Rats exposed to hypobaric hypoxia for 2-18 mo showed 20-60% increased left ventricle mtNOS activity compared with their normoxic siblings. Left ventricle NADH-cytochrome-c reductase and cytochrome oxidase activities decreased by 36 and 12%, respectively, from 2 to 18 mo of age, but they were not affected by hypoxia. mtNOS upregulation in hypoxia was associated with a retardation of the decline in the mechanical activity of papillary muscle upon aging and an improved recovery after anoxia-reoxygenation. The correlation of left ventricle mtNOS activity with papillary muscle contractility (determined as developed tension, maximal rates of contraction and relaxation) showed an optimal mtNOS activity (0.69 nmol.min(-1).mg protein(-1)). Heart mtNOS activity is regulated by O(2) in the inspired air and seems to play a role in NO-mediated signaling and myocardial contractility.  相似文献   

13.
The relation between global left ventricular pumping characteristics and local cardiac muscle fiber mechanics is represented by a mathematical model of left ventricular mechanics in which the mitral valve papillary muscle system is incorporated. The wall of the left ventricle is simulated by a thick-walled cylinder. Transmural differences in fiber orientation are incorporated by changing the direction of material anisotropy across the wall. The cylinder is free to twist. The upper end of the cylinder is covered by a thin, flexible sheet, representing the base of the left ventricle. The mitral valve is incorporated in this sheet. The tips of the mitral leaflets are connected by chordae tendineae to the papillary muscles which are attached to the bottom of the cylinder. Canine cardiac cycles were simulated for various end-diastolic values of left ventricular volume (25-120 ml, control 60 ml), left atrial pressure (0-2.7 kPa, control 0.22 kPa) and aortic pressure (5-11 kPa, control 11 kPa). In this wide range of preload and afterload mechanical loading of the muscle fibers appeared to be distributed quite evenly (SD: +/- 5% of control value) over all muscular structures of the left ventricle, including the papillary muscles.  相似文献   

14.
Previous reports suggest that hypoxia downregulates cardiac beta-adrenergic receptors from young rats. Because aging alters response to stress, we hypothesized an age-related alteration in the response to hypoxia. Male Fischer-344 rats, aged 3 and 20 mo, were divided into control and hypoxic groups. The hypoxic rats were exposed to hypobaric hypoxia (0.5 atm) for 3 wk. After hypoxic exposure, body weight decreased, hematocrit increased, right ventricular weight increased, and left ventricular weight decreased in all animals. beta-Adrenergic receptor density declined after hypoxic exposure in the young but not in the older animals, a change that was confined to the left ventricle. beta-Adrenergic receptor density in the right ventricle was significantly lower in the older animals than in the young animals. Plasma catecholamines (norepinephrine, epinephrine) drawn after the animals were killed (stress levels) decreased in young rats and increased in old rats after the exposure to hypoxia. Hypoxia is a useful physiological stress that elucidates age-related changes in cardiac beta-adrenergic receptor and catecholamine regulation that have not previously been described.  相似文献   

15.
The course of experimental myocardial infarction was accompanied by the growth response of the right ventricle (RV) in some rats. Rats with RV hypertrophy unlike ones without RV hypertrophy had depressed cardiac contraction force and velocity at rest as well as a minimal capacity to respond to functional stress. Dibunol (butylhydroxytoluene, 30 mg/kg) prevented the depression of cardiac contractility and RV growth. RV hypertrophy in the rats following left coronary artery ligation is the consequence of the left ventricle pump failure and resultant pulmonary hypertension. RV hypertrophy may be proposed as an index of postinfarct heart failure and its reduction as an index of the cardioprotective effect of various pharmacological interventions.  相似文献   

16.
The effects of 4-aminopyridine (4-AP) at concentration of 1 mM on the contractility of rat isolated papillary muscle subjected to simulated ischaemia has been evaluated. Additionally, the effects of 4-AP on the phenylephrine inotropic action (a selective agonist of alpha1-adrenergic receptor) on rat isolated cardiac tissue underwent simulated ischaemia and reperfusion was studied. Experiments were performed on rat isolated papillary muscles obtained from left ventricle. The following parameters have been measured: force of contraction (Fc), velocity of contraction (+dF/dt), velocity of relaxation (-dF/dt) and the ratio between time to peak contraction (ttp) and relaxation time at the level of 10% of total contraction amplitude (tt10) as an index of lusitropic effects. Simulated ischaemia lasting 45 min was induced by replacement of standard normoxic solution by no-substrat one gassing with 95% N2/5%CO2. Although 4-AP exerted a slight, but significant positive inotropic action itself, pretreatment with 1 mM of this compound significantly depressed a recovery of Fc and +dF/dt, but improves recovery of -dF/dt in the rat papillary muscle during reperfusion as compared with control group of preparations. Moreover, the paradoxical negative inotropic action of phenylephrine observed in rat stunned papillary muscle was prevented in preparations previously treated by 4-AP. These findings suggest that an inhibition of outward K+ current (probably transient outward and rapid component of delayed rectifying currents at 1 mM of 4-AP) aggravates ischaemia-induced failure in contractility but prevents changes in alpha1-adrenergic receptor signaling pathway occuring during ischaemia.  相似文献   

17.
Isolated perfused rat hearts were used to compare the effects of the synthetic neuropeptide Y (NPY) and 4-norleucine-NPY on cardiac function. Each peptide exhibited both negative inotropic and chronotropic effects, and also caused coronary vasoconstriction leading to a reduction in coronary flow. A comparison of the IC50 values from dose-response curves using 10(-14) to 10(-7) M peptides (IC50 is the peptide concentration that produced a 50% decrease of the maximal effect) indicated that NPY was more potent as inhibitor of contractility and less potently inhibited coronary flow and heart rate, whereas 4-norleucine-NPY had more inhibitory influence on coronary flow and heart rate and less on cardiac contractility. This difference in potencies suggests that the inhibitory effects of NPY on contractility, coronary flow and heart rate may be independent of each other. Since NPY also decreased the contractile force of isolated left atrial and right ventricular strips of the rat heart, the coronary flow decrease cannot be the cause of the negative inotropy of isolated heart. Pretreatment of atrial and ventricular strips with NPY did not influence the positive inotropic effect produced by the cardiac glycoside ouabain indicating that sarcolemmal Na+, K+-ATPase was not involved in the inhibitory inotropic effect of NPY. Further studies towards elucidating the mechanism of the negative inotropy of cardiac muscles using isolated heart mitochondria revealed that NPY uncoupled oxidative phosphorylation and blocked mitochondrial calcium uptake; the former event fosters negative inotropy. Since these effects on mitochondria occurred at concentrations 100-fold higher than those required for negative inotropy, the two effects of NPY may not be related.  相似文献   

18.
Surgical (removal of a superior cervical ganglion) or chemical [(administration of a single dose of 6 hydroxydopamine (6 OHDA) (50 mg/kg dose body wt)] sympathectomy of rats at 2 or 8 days of age resulted in an increase in [3H]DHA binding of membranes of parotid gland of young rats (age range 21 days to 48 days). The increase progressed with postnatal age; at 21 days of age (surgical sympathectomy), it was 13%; at 32 days of age with 6 OHDA, it was as much as 34%, but only 26% at 42 days of age with surgical sympathectomy. No change in [3H]QNB binding was observed at any postnatal ages following neonatal sympathectomy. Conversely, surgical sympathectomy of the parotid of adult rat resulted in little or no change in [3H]DHA binding at 1, 2, 3, or 4 weeks postdenervation, but [3H]QNB binding was reduced at all periods, with the reduction from control values at 2 weeks being 34%, and at the subsequent intervals, 24-26%. The increase in number of beta adrenoceptors of the parotid gland was not related to the kind of sympathectomy (chemical or surgical) or neonatal age at which it was done; however, duration of the denervation for 2-3 weeks was necessary for the receptor increase to occur. In the adult, however, the duration of the denervation was of no importance since change in number of beta adrenoceptors did not occur at 1, 2, 3, or 4 weeks after surgical denervation but did occur after only 1 week after of reserpine-induced denervation. QNB binding was decreased with surgical sympathectomy as well as reserpine-induced sympathectomy of adult parotid gland; norepinephrine concentration was decreased to levels of a few percent of innervated glands. The relation between development of glandular supersensitivity and increase in beta adrenoceptors is discussed.  相似文献   

19.
Selegiline is a centrally acting sympatholytic agent with neuroprotective properties. It also has been shown to promote sympathetic reinnervation after sympathectomy. These actions of selegiline may be beneficial in heart failure that is characterized by increased sympathetic nervous activity and functional sympathetic denervation. Twenty-seven rabbits with rapid cardiac pacing (360 beats/min, 8 wk) and twenty-three rabbits without pacing were randomly assigned to receive selegiline (1 mg/day, 8 wk) or placebo. Rapid pacing increased plasma norepinephrine (NE) and decreased left ventricular fractional shortening, baroreflex sensitivity, cardiac sympathetic nerve terminal profiles, cardiac NE uptake activity, and myocardial beta-adrenoceptor density. Selegiline administration to animals with rapid ventricular pacing attenuated the increase in plasma NE and decreases in fractional shortening, baroreflex sensitivity, sympathetic nerve profiles, NE uptake activity and beta-adrenoceptor density. Thus selegiline appears to exert a sympatholytic and cardiac neuroprotective effect in pacing-induced cardiomyopathy. The effects are potentially beneficial because selegiline not only improves cardiac function but also increases baroreflex sensitivity in heart failure.  相似文献   

20.
The interaction between the gravitational field, the position of the body, and the functional characteristics of the blood vessels determines the distribution of intravascular volume. In turn, this distribution determines cardiac pump function. One of the most profound circulatory changes that occurs in man during exposure to weightlessness is a cephalad redistribution of fluid caused by the lack of hydrostatic pressure in this microgravitative environment. The cephalad redistribution of fluid results in a loss of blood volume and then induces a decrease in preload. Recently, a decrease in sensitivity of arteriole to catecholamine has reported in rats of simulated weightlessness. This change in arteriole may reduce afterload. As a result, cardiovascular system may be shifted to a hypokinetic state during weightlessness condition for long-term. Echocardiographic data from astronauts during space flight showed an increase in heart rate, a 12 % decrease in stroke volume, and a 16 % decrease in left end diastolic volume. Electron-microscopic studies have shown changes in cardiac morphology in rats after exposure to microgravity for 7-12.5 days. After the COSMOS 2044 flight for 14 days, the light-microscopic studies have shown an atrophy of papillary muscles in rats left cardiac ventricle. It is not clear whether the function of atrophic myocardium is impaired. The data in three aspects as mentioned above suggest that weightlessness or simulated weightlessness may decrease the myocardial function. However, definite changes in cardiac performance have been hard to prove due to many limits. This studies were to answer two questions: Is the myocardial contractility depressed in rats subjected to simulated weightlessness for four weeks? What are the underlying mechanisms of the changing contractility?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号