首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We designed and synthesized 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) and 2- [6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF) as novel fluorescence probes to detect selectively highly reactive oxygen species (hROS) such as hydroxyl radical (*OH) and reactive intermediates of peroxidase. Although HPF and APF themselves scarcely fluoresced, APF selectively and dose-dependently afforded a strongly fluorescent compound, fluorescein, upon reaction with hROS and hypochlorite ((-)OCl), but not other reactive oxygen species (ROS). HPF similarly afforded fluorescein upon reaction with hROS only. Therefore, not only can hROS be differentiated from hydrogen peroxide (H(2)O(2)), nitric oxide (NO), and superoxide (O2*-) by using HPF or APF alone, but (-)OCl can also be specifically detected by using HPF and APF together. Furthermore, we applied HPF and APF to living cells and found that HPF and APF were resistant to light-induced autoxidation, unlike 2',7'-dichlorodihydrofluorescein, and for the first time we could visualize (-)OCl generated in stimulated neutrophils. HPF and APF should be useful as tools to study the roles of hROS and (-)OCl in many biological and chemical applications.  相似文献   

2.
Summary

The antioxidant activity of an anti-ischemic agent, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), was examined. The pKa value of MCI-186 is 7.0 and the rate of oxidation of MCI-186 initiated with an azo compound increased with increasing pH, suggesting that the anionic form of MCI-186 is much more reactive than the non-ionic form. The major products were 3-methyl-1-phenyl-2-pyrazolin-4,5-dione (4,5-dione) and 2-oxo-3-(phenylhydrazono)-butanoic acid (OPB). Hydrolysis of 4,5-dione gave OPB. The minor intermediate product was 4-hydroxy-4-(3-methyl-1-phenyl-1H-pyrazolin-5-on-4-yl)-3-methyl-1-phenyl-1H-pyrazolin-5-one (BPOH). The nucleophilic attack of the anionic form of MCI-186 to 4,5-dione is likely to give BPOH. MCI-186 (50 μM) inhibited the aerobic oxidation at 37°C of 5.2 mM unilamellar soybean phosphatidylcholine (PC) liposomal membranes, initiated with a water-soluble initiator, as efficientlyas did ascorbate (100 μM). MCI-186 (50 μM) also inhibited the oxidation of the same PC liposomal membranes, this time initiated with a lipid-soluble initiator, almost as efficiently as did α-tocopherol (2 μM). Furthermore, the combination of MCI-186 with ascorbate or α-tocopherol showed almost complete inhibition of PC oxidation induced by both initiators. These data suggest that MCI-186 may work as a good antioxidant in cellular systems as well as in cell-free systems.  相似文献   

3.
Using cultured bovine aortic endothelial cells, the effects of MCI-186, a radical scavenger, were studied on arachidonic acid metabolism and on the cell injury caused by 15-HPETE. MCI-186 at 3 X 10(-5) M enhanced prostacyclin production in the intact endothelial cells without affecting phospholipase A2. When endothelial cell homogenates were used as an enzyme source, it was found that MCI-186 stimulated the conversion of arachidonic acid to prostacyclin like phenol, perhaps by trapping OH radicals produced in the process of the conversion of PGG2 to PGH2. On the other hand, MCI-186 was found to inhibit lipoxygenase metabolism of arachidonic acid in cell free homogenates of rat basophilic leukemia cells. The lipoxygenase inhibition caused by 3 X 10(-5) M MCI-186 was almost equivalent to that caused by 3 X 10(-6) M BW 755C. MCI-186 remarkably protected against endothelial cell damage caused by 15-HPETE. 3 X 10(-5) M of 15-HPETE caused endothelial cell death in about 60% of the population: however, pretreatment of the cells with 10(-5) M of MCI-186 or concomitant addition of 10(-5) M of MCI-186 with 15-HPETE to the cultures prevented the cell death completely. These results suggest that MCI-186 may become an unique anti-ischemic drug.  相似文献   

4.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   

5.
In this study, we tested the hypothesis that MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one; edaravone), a novel free radical scavenger, protects against acute experimental autoimmune myocarditis (EAM) in rats by the radical scavenging action associated with the suppression of cytotoxic myocardial injury. Recent evidence suggests that oxidative stress may play a role in myocarditis. We administered MCI-186 intraperitoneally at 1, 3, and 10 mg.kg(-1).day(-1) to rats with EAM for 3 wk. The results were compared with untreated rats with EAM. MCI-186 treatment did not affect hemodynamics. MCI-186 treatment (3 and 10 mg.kg(-1).day(-1)) reduced the severity of myocarditis as assessed by comparing the heart-to-body weight ratio and pathological scores. Myocardial interleukin-1beta (IL-1beta)-positive cells and myocardial oxidative stress overload with DNA damage in rats with EAM given MCI-186 treatment were significantly less compared with those of the untreated rats with EAM. In addition, MCI-186 treatment decreased not only the myocardial protein carbonyl contents but also the myocardial thiobarbituric acid reactive substance products in rats with EAM. The formation of hydroxyl radicals in MCI-186-treated heart homogenates was decreased compared with untreated heart homogenates. Furthermore, cytotoxic activities of lymphocytes of rats with EAM treated with MCI-186 were significantly lower compared with those of the untreated rats with EAM. Hydroxyl radicals may be involved in the development of myocarditis. MCI-186 protects against acute EAM in rats associated with scavenging hydroxyl free radicals, resulting in the suppression of autoimmune-mediated myocardial damage associated with reduced oxidative stress state.  相似文献   

6.
We demonstrated that the production of reactive oxygen species (ROS) by U937 macrophage-like cells was suppressed upon infection with a wild type Legionella pneumophila strain, whereas such suppression was not observed in the case of infection with intracellular growth-deficient mutants. This was supported not only by measuring ROS released into the supernatants of cell cultures by chemiluminescence assaying but also by detecting intracellular ROS with a fluorescent probe, 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF), under a confocal laser scanning microscope. Furthermore, more than 60% of the phagosomes containing intracellular growth-deficient mutants were colocalized with p47(phox), which is the cytosolic subunit of NADPH oxidase, consistently throughout the observation period in an early stage of bacterial infection. In contrast, the colocalization of p47(phox) was suppressed after infection with the wild type strain. These results suggest that the interference with ROS production by U937 cells infected with wild type L. pneumophila is due to a failure of NADPH oxidase activation through inhibition of p47(phox) recruitment to phagosomes harboring bacteria. The results also highlighted the difference in the nature of phagosomes between ones harboring the wild type and ones the intracellular growth-deficient strains.  相似文献   

7.
Myocardial protection of MCI-186 in rabbit ischemia-reperfusion   总被引:6,自引:0,他引:6  
Wu TW  Zeng LH  Wu J  Fung KP 《Life sciences》2002,71(19):2249-2255
We observed that 3-methyl-1-1phenyl-2-pyrazolin-5-one (MCI-186), a newly-developed free radical scavenger, attenuated necrosis in the in vivo rabbit hearts upon reperfusion after prolonged ischemia. In rabbits undergoing 1 hour ligation of the anterior ventricular coronary artery, a single bolus injection of MCI-186 (1.5 mg/kg) was introduced into the post-ischemic heart immediately before 4 hour reperfusion. Compared to negligible necrosis in sham-operated control animals and 33.81 +/- 13.50% necrosis in the area at risk for the saline control group (n = 8), the MCI-186 - treated group (n = 8) had a necrosis of 13.27 +/- 4.60% (p < 0.05 vs saline control group). The pressure-rate index had a slight decrease in MCI-186 treated group compared to the control group (p > 0.05). However, the blood levels of malondialdehyde (MDA) in MCI-186 treated group (2.08 +/- 0.23 microM) was significantly smaller than that of 2.65 +/- 0.31 microM in control animals (p < 0.01), while sham control had an average MDA level of 1.91 +/- 0.40 microM, with p > 0.05 relative to that in the MCI-186 treated group. These data support our contention that MCI-186 reduces reperfusion injury in perfused hearts with prolonged ischemia and the mechanism for the in vivo efficacy of MCI-186 is predominantly related to its antioxidant activities.  相似文献   

8.
We have studied the mechanisms underlying nonpathological age-related neuronal cell death. Fifty per cent of neurons in the rat enteric nervous system are lost between 12 and 18 months of age in ad libitum (AL) fed rats. Caloric restriction (CR) protects almost entirely against this neuron loss. Using the ROS-sensitive dyes, dihydrorhodamine (DHR) and 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF) in vitro, we show that the onset of cell death is linked with elevated intraneuronal levels of reactive oxygen species (ROS). Treatment with the neurotrophic factors NT3 and GDNF enhances neuronal antioxidant defence in CR rats at 12-15 months and 24 months but not in adult or aged AL-fed animals. To examine the link between elevated ROS and neuronal cell death, we assessed apoptotic cell death following in vitro treatment with the redox-cycling drug, menadione. Menadione fails to increase apoptosis in 6-month neurons. However, in 12-15mAL fed rats, when age-related cell death begins, menadione induces a 7- to 15-fold increase in the proportion of apoptotic neurons. CR protects age-matched neurons against ROS-induced apoptosis. Treatment with neurotrophic factors, in particular GDNF, rescues neurons from menadione-induced cell death, but only in 12-15mCR animals. We hypothesize that CR enhances antioxidant defence through neurotrophic factor signalling, thereby reducing age-related increases in neuronal ROS levels and in ROS-induced cell death.  相似文献   

9.
MCI-186: further histochemical and biochemical evidence of neuroprotection   总被引:7,自引:0,他引:7  
Wu TW  Zeng LH  Wu J  Fung KP 《Life sciences》2000,67(19):2387-2392
The bioactivity of 3-methyl-1-phenyl-pyrazolin-5-one (MCI-186) was examined based on histochemical changes in drastic global ischemic rat brains. Rats with mean arterial blood pressure reduction were subjected to 60 min cerebral ischemia/80 min reperfusion. Infusion of MCI-186 at 3.0 mg/Kg reduced brain infarction from 21 +/- 4% (saline control, n= 15) to 11 +/- 3% (n=16, p<0.05). By comparison, infusion of up to 20 mg/Kg propyl galalate (PG)--a well documented antioxidant--produced an infarct percentage of 14 +/- 5% (n=8), close to the saline control. Biochemically, the neuroprotective effect of MCI-186 was demonstrated by diminishing the release of creatine kinase (CK) in serum from 3363 +/- 608 U/L (n=14) in saline control to 1989 +/- 293 U/L (n= 15) in MCI group (p<0.05), while PG did not lower the activity of CK significantly. MCI-186 behaves as a free radical scavenger by suppressing the formation of superoxide anion in xanthine oxidase (XO)-hypoxanthine (HP) system (p<0.05). Our data supported our contention that MCI-186 has potent anti-stroke effect with antioxidant activities.  相似文献   

10.
Steady-state and time-resolved fluorescence spectroscopy has been used to obtain information on oxidation processes and associated dynamical and structural changes in model membrane bilayers made from single unilamellar vesicles (SUV's) of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed with increasing amounts of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC). The highly unsaturated arachidonoyl chain containing four double bonds is prone to oxidation. Lipid oxidation was initiated chemically by a proper oxidant and could be followed on line via the fluorescence changes of an incorporated fluorescent lipophilic fatty acid: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BP-C11). The oxidation rate increases with an increasing amount of SAPC. Size measurements of different SUV's incorporated with a trace amount of a phosphatidylcholine analogue of BP-C11 using fluorescence correlation spectroscopy have demonstrated that an increase of lipid unsaturation results in smaller sized SUV's and therefore to a larger curvature of the outer bilayer leaflet. This suggests that the lipid-lipid spacing has increased and that the unsaturated fatty acyl chains are better accessible for the oxidant. Oxidation results in some characteristic physical changes in membrane dynamics and structure, as indicated by the use of specific fluorescence probes. Fluorescence measurements of both dipyrenyl- and diphenylhexatriene-labelled PC introduced in non-oxidised and oxidised DOPC-SAPC membranes clearly show that the microfluidity (local fluidity at the very site of the probes) significantly decreases when the oxidised SAPC content increases in the lipid mixture. A similar effect is observed from the lateral diffusion experiments using monopyrenyl PC in the same membrane systems: the lateral diffusion is distinctly slower in oxidised membranes.  相似文献   

11.
Cholestasis-induced liver injury during bile duct obstruction causes an acute inflammatory response. To further characterize the mechanisms underlying the neutrophil-induced cell damage in the bile duct ligation (BDL) model, we performed experiments using wild-type (WT) and ICAM-1-deficient mice. After BDL for 3 days, increased ICAM-1 expression was observed along sinusoids, along portal veins, and on hepatocytes in livers of WT animals. Neutrophils accumulated in sinusoids [358 +/- 44 neutrophils/20 high-power fields (HPF)] and >50% extravasated into the parenchymal tissue. Plasma alanine transaminase (ALT) levels increased by 23-fold, and severe liver cell necrosis (47 +/- 11% of total cells) was observed. Chlorotyrosine-protein adducts (a marker for neutrophil-derived hypochlorous acid) and 4-hydroxynonenal adducts (a lipid peroxidation product) were detected in these livers. Neutrophils also accumulated in the portal venules and extravasated into the portal tracts. However, no evidence for chlorotyrosine or 4-hydroxynonenal protein adducts was detected in portal tracts. ICAM-1-deficient mice showed 67% reduction in plasma ALT levels and 83% reduction in necrosis after BDL compared with WT animals. The total number of neutrophils in the liver was reduced (126 +/- 25/20 HPF), and 85% of these leukocytes remained in sinusoids. Moreover, these livers showed minimal staining for chlorotyrosine and 4-hydroxynonenal adducts, indicating a substantially reduced oxidant stress and a diminished cytokine response. Thus neutrophils relevant for the aggravation of acute cholestatic liver injury in BDL mice accumulate in hepatic sinusoids, extravasate into the tissue dependent on ICAM-1, and cause cell damage involving reactive oxygen formation.  相似文献   

12.
Reperfusion after a period of ischemia is associated with the formation of reactive oxygen species (ROS) and Ca2+ overload resulting in the opening of a nonspecific pore in the inner membrane of the mitochondria, called the mitochondrial permeability transition pore (PTP), leading to cell damage. Although endogenous antioxidants are activated because of oxidative stress following ischemia, their levels are not high enough to prevent reperfusion injury. Hence there is always a need for exogenous supplement of antioxidants, especially after acute ischemia. Here we demonstrated the effects of the antioxidant 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) in preventing reperfusion injury of the heart by inhibition of PTP opening. Ischemia (30 min) by left coronary artery (LCA) occlusion and reperfusion (120 min) in Wistar rats after pretreatment with MCI-186 (10 mg/kg iv) infusion starting from 30 min before LCA occlusion resulted in 1) less area of myocardial infarction (19.2% vs. 61.6%), 2) well-maintained myocardial ATP content (P < 0.03 vs. control), 3) decreased mitochondrial swelling and reduced cytochrome c release, 4) increased expression of BCl-2, 5) lower prevalence of apoptotic cells (14.3% vs. 2.9%), and 6) reduced DNA fragmentation in the MCI-186-treated group. These cytoprotective effects of MCI-186 were inhibited on opening PTP before MCI-186 treatment with the PTP activators lonidamine (10 mg/kg iv) or atractyloside (5 mg/kg iv) but failed to inhibit the protective effects exerted by another antioxidant, allopurinol, suggesting that the PTP inhibiting property is specific for MCI-186. These results demonstrate that the radical scavenger MCI-186, by inhibiting the opening of the PTP, prevents necrosis and cytochrome c release and hence pathological apoptosis.  相似文献   

13.
Treatment of human erythrocyte membranes with active forms of chlorine (hypochlorous acid and chloramine T) resulted in a concentration-dependent inhibition of the membrane Na(+), K(+)- and Mg(2+)-ATPases. Membrane protein thiol group oxidation was consistent with inactivation of enzymes and preceded oxidation of tryptophan residues and chloramine formation. Erythrocyte exposure to hypochlorous acid led to complex changes of cell membrane rigidity and cell morphological transformations: cell swelling, echinocyte formation, and haemolysis. The inhibition of ion pump ATPases of human erythrocyte membranes may be due to direct oxidation of essential residues of enzyme (thiol groups) and structural rearrangement of the membrane.  相似文献   

14.
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4′-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.  相似文献   

15.
Microcystin-LR (MCLR) is a potent hepatotoxin. Oxidative stress is thought to be implicated in the cytotoxicity of MCLR, but the mechanisms by which MCLR produces reactive oxygen species (ROS) are still unclear. This study investigated the role and possible sources of ROS generation in MCLR-induced cytogenotoxicity in HepG2, a human hepatoma cell line. MCLR increased DNA strand breaks, 8-hydroxydeoxiguanosine formation, lipid peroxidation, as well as LDH release, all of which were inhibited by ROS scavengers. ROS scavengers partly suppressed MCLR-induced cytotoxicity determined by the MTT assay. MCLR induced the generation of ROS, as confirmed by confocal microscopy with 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, and upregulated the expression of CYP2E1 mRNA. In addition, CYP2E1 inhibitors chlormethiazole and diallyl sulphide inhibited both ROS generation and cytotoxicity induced by MCLR. The results suggest that ROS contribute to MCLR-induced cytogenotoxicity. CYP2E1 might be a potential source responsible for ROS generation by MCLR.  相似文献   

16.
The crucial functions of HIV-1 nucleocapsid-p7 protein (NC-p7) at different stages of HIV replication are dependent on its nucleic acid binding properties. In this study, a search has been made to identify antagonists of the interaction between NC-p7 and d(TG)(4). A chemical library of approximately 2000 small molecules (the NCI Diversity Set) was screened, of the 26 active inhibitors that were identified, five contained a xanthenyl ring structure. Further analysis of 63 structurally related compounds led to the identification of 2,3,4,5-tetrachloro-6-(4('),5('),6(')-trihydroxy-3(')-oxo-3H-xanthen-9(')-yl)benzoic acid, which binds to NC-p7 stoichiometrically. This compound exerted a significant anti-HIV activity in vitro with an IC(50) of 16.6+/-4.3 microM (means+/-SD). Synthetic variants lacking the two hydroxyls at positions 4(') and 5(') in the xanthenyl ring system failed to bind NC-p7 and showed significantly less protection against HIV infection. Molecular modeling predicts that these hydroxyl groups would bind to the amide nitrogen of Gly(35) with other contacts at the carbonyl oxygens of Gly(40) and Lys(33).  相似文献   

17.
Myeloperoxidase (MPO)-derived hypochlorous acid induces changes in HDL function via redox modifications at the level of apolipoprotein A-I (apoA-I). As 4F and apoA-I share structural and functional properties, we tested the hypothesis that 4F acts as a reactive substrate for hypochlorous acid (HOCl). 4F reduced the HOCl-mediated oxidation of the fluorescent substrate APF in a concentration-dependent manner (ED(50) ~ 56 ± 3 μM). This reaction induced changes in the physical properties of 4F. Addition of HOCl to 4F at molar ratios ranging from 1:1 to 3:1 reduced 4F band intensity on SDS-PAGE gels and was accompanied by the formation of a higher molecular weight species. Chromatographic studies showed a reduction in 4F peak area with increasing HOCl and the formation of new products. Mass spectral analyses of collected fractions revealed oxidation of the sole tryptophan (Trp) residue in 4F. 4F was equally susceptible to oxidation in the lipid-free and lipid-bound states. To determine whether Trp oxidation influenced its apoA-I mimetic properties, we monitored effects of HOCl on 4F-mediated lipid binding and ABCA1-dependent cholesterol efflux. Neither property was altered by HOCl. These results suggest that 4F serves as a reactive substrate for HOCl, an antioxidant response that does not influence the lipid binding and cholesterol effluxing capacities of the peptide.  相似文献   

18.
The reference standard 2-fluoro-4-(1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)vinyl)benzoic acid was synthesized from 2,5-dimethyl-2,5-hexanediol and 2-fluoro-4-methylbenzoic acid in 10 steps with 3% overall chemical yield. The precursor 2-nitro-4-(1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)vinyl)benzoic acid was synthesized from 2,5-dimethyl-2,5-hexanediol and dimethyl-2-nitroterephthalate in seven steps with 2% overall chemical yield. The target tracer 2-[18F]fluoro-4-(1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)vinyl)benzoic acid was synthesized from its nitro-precursor by the nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC combined with solid-phase extraction (SPE) purification in 20–30% radiochemical yield with 37–370 GBq/μmol specific activity at end of bombardment (EOB).  相似文献   

19.
Two isomeric dimeric steroids, 3,3'-bis(methyl 3-hydroxyandrost-4-en-17-on-19-oate-3-yl), with symmetrical (alpha, alpha') and unsymmetrical structures (alpha,beta'), have been obtained by reduction of methyl androst-4-ene-3,17-dion-19-oate with zinc in aqueous acetic acid together with the major products, the isomeric methyl 5alpha- and 5beta-androst-3-en-17-on-19-oates. The structures of the dimers and unsaturated products are supported by spectroscopic methods. The symmetrical dimer was also obtained from treatment of the 4-en-3-on-19-oate ester with lithium in ammonia.  相似文献   

20.
《Free radical research》2013,47(5):361-367
MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one) is a newly developed antioxidant which has been shown to reduce brain edema in cerebral ischemia through inhibition of the lipoxygenase pathway of arachidonic acid. However, its effect on myocardial reperfusion injury after prolonged ischemia has not yet been demonstrated. We compared the mode of the effect of MCI-186 and recombinant human CuZn superoxide dismutase (rh-SOD) in isolated perfused rat hearts subjected to 60-min ischemia followed by 60-min reperfusion. Left ventricular developed pressure (LVDP), necrotic area and the release of creatine phosphokinase (CPK) and endogenous CuZn superoxide dismutase (endoge-SOD) were measured to evaluate myocardial damage. The decrease in left coronary flow (CBF) was measured as an index of the damage of left coronary circulation. MCI-186 (17.5 mg/L) was perfused for 10 min in the MCI group and rh-SOD (70 mg/L) was perfused during the reperfusion period in the SOD group starting 5 min prior to reperfusion. The release patterns of CPK and endoge-SOD were analyzed to elucidate the difference in the mode of protection of MCI-186 and rh-SOD. The LVDP remained higher in both MCI and SOD groups than that of control (76 ± 1, 77 ± 2 and 69 ± 1% of preischemic value, respectively). The necrotic area was significantly attenuated in both MCI and SOD groups compared with that in the control group (16 ± 1,14 ± 1 and 32 ± 170, respectively, p<0.05). Total CPK release was lower in both MCI and SOD groups thfn in the control (78 ± 7, 100 ± 2 and 116 ± 4 × 103 units/g myocardium respectively). The decrease in CPK release was more marked in the MCI group than that in the SOD group (p<0.05). The reduction in CBF was significantly attenuated by the treatment with rh-SOD or MCI-186, but the effect was much higher in the SOD group than in the MCI group (69 ± 5, 58 ± 2, and 48 ± 2% in SOD, MCI and control groups, respectively). The release pattern of endoge-SOD was identical to that of CPK and thus this did not distinguish the mode of effect of MCI-186 from that of rh-SOD. These results indicate that MCI-186 reduces reperfusion injury in isolated perfused hearts with prolonged ischemia and the effect is more closely related to the reduction of myocyte damage than the preservation of the coronary circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号